Тепловое состояние малого спутника при различной плотности расположения электронных плат | Вестник Томского государственного университета. Математика и механика. 2023. № 82. DOI: 10.17223/19988621/82/6

Тепловое состояние малого спутника при различной плотности расположения электронных плат

Малые космические аппараты CubeSat не имеют активных систем терморегулирования, однако для сохранения работоспособности имеющихся радиоэлектронных компонент необходимо поддерживать их температуру в определенном интервале. В данной работе рассмотрено влияние на тепловое состояние космического аппарата 1U CubeSat тепловыделения на платах радиоэлектронного оборудования при различной плотности их расположения (различном количестве плат). Учитывались поглощенное излучение от внешних источников, излучение с внешних поверхностей корпуса CubeSat, тепловыделение на платах, перенос излучения внутри корпуса.

Ключевые слова

форм-фактор, излучение, тепловое состояние, космический аппарат, CubeSat

Авторы

ФИООрганизацияДополнительноE-mail
Белов Сергей ВикторовичТомский государственный университеткандидат физико-математических наук, младший научный сотрудник НИИПММbelovsv@niipmm.tsu.ru
Бельков Алексей ВикторовичТомский государственный университеткандидат физико-математических наук, старший научный сотрудник НИИПММaleksei-belkov @niipmm.tsu.ru
Жуков Андрей ПетровичТомский государственный университеткандидат физико-математических наук, старший научный сотрудник НИИПММzh@niipmm.tsu.ru
Павлов Михаил СергеевичТомский государственный университеткандидат физико-математических наук, младший научный сотрудник НИИПММmcpavlov@niipmm.tsu.ru
Пономарев Сергей ВасильевичТомский государственный университетдоктор физико-математических наук, старший научный сотрудник, заведующий отделом НИИПММpsv@niipmm.tsu.ru
Всего: 5

Ссылки

Aboobakar S.F.C. Dynamic and Thermal Models for ECOSat-III: Thesis.. Master of Science Degree in Aerospace Engineering. Lisboa, 2016.
Corpino S., Caldera M., N,chele F., Masoero M., V,ola N. Thermal design and analysis of a nanosatellite in low Earth orbit // Acta Astronautica. 2015. V. 115. P. 247-261.
Morsch F.E., Seman L.O., Nicolau V. Simulation of a CubeSat with internal heat transfer using finite volume method // Applied Thermal Engineering. 2021. V. 193. Art. 117039.
Morsch F.E., Nicolau V., Paiva K., Possamai T. A comprehensive attitude formulation with spin for numerical model of irradiance for CubeSats and Picosats // Applied Thermal Engineering. 2019. V. 168. Art. 114859.
Hajji A.R., Mirhosseini M., Saboonchi A. Moosavi A. Different Methods for Calculating a View Factor in Radiative Applications: Strip to In-Pane Parallel Semi-Cylinder // Journal of Engineering Thermophysics. 2015. V. 24 (2). P. 169-180.
Уонг Х. Основные формулы и данные по теплообмену для инженеров: справочник: пер с англ. М.: Атомиздат, 1979. 216 с.
PC/104 Pluse Specification v. 2.0. 2003. 28 p. URL: https://resources.winsystems.com/specs/PC104PlusSpec.pdf (accessed: 07.09.2022).
Чмырев В.М., Нестеров Б.Ф. Возможности и компетенции по созданию российской группировки наноспутников стандарта CubeSat // АО "Технологии ГЕОСКАН". 2018 URL: http://spaceresearch.ssau.ru/sites/all/themes/venture_theme/Concor/7.pdf (дата обращения: 07.09.2022).
Akyildiz I.F., Jornet J.M., Nie S. A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks // Ad Hoc Networks. 2003. V. 86. P. 166-178.
Guedes M.B.V. Cubesat Structural and Thermal Analysis Methodology ISTsat-1 Design: Thesis.. Master of Science Degree in Aerospace Engineering. Lisboa, 2019.
Santoni F., Piergentili F., Donati S., Perelli M., Negri A., Marino M. An innovative deployable solar panel system for cubesats // Acta Astronautica. 2014. V. 95 (1). P. 210-217.
Cervone A., Topputo F., Speretta S., Menicucci A., Turan E., Di Lizia P., Massari M., Franzese V., Giordano C., Merisio G., Labate D., Pilato G., Costa E., Bertels E., Thorvaldsen A., Kukharenka A., Vennekens J., Walker R. LUMIO: A CubeSat for observing and characterizing micro-meteoroid impacts on the lunar far side // Acta Astronautica. 2022. V. 195. P. 309-317.
Reyesa L.A., Cabriales-Gomez R., Chavez C.E., Bermudez-Reyes B., Lopez-Botello O., Zambrano-Robledo P. Thermal modeling of CIIIASat nanosatellite: A tool for thermal barrier coating selection // Applied Thermal Engineering. 2020. V. 166. Art. 114651.
Наноспутниковая платформа CubeSat "OrbiCraft-Pro". М., 2019. URL: https://sputnix.ru/tpl/docs/oписание%20ОрбиКрафт-Про%20(рус.).pdf (дата обращения: 07.09.2022).
Rathinam A. Design and Development of UWE-4: Integration of Electric Propulsion Units, Structural Analysis and Orbital Heating Analysis: Thesis for Master of Science Degree. Lisboa, 2019.
Белоконов И.В., Тимбай И.А., Баринова Е.В. Выбор проектных параметров наноспутника формата CubeSat с пассивной системой стабилизации // Гироскопия и навигация. 2020. Т. 28, № 1 (108). С. 81-100.
Hakima H., Bazzocchi M.C.F. Cubesat with dual robotic manipulators for debris mitigation and remediation // Advances in the Astronautical Sciences 5th IAA Conference on University Satellite Missions and Cubesat Workshop, Rome, Italy, 28 January - 31 January 2020. V. 173. P. 149-162.
Liu J., Zhao P., Wu C., Chen K., Ren W., Liu L., Tang Y., Ji C., Sang X. SIASAIL-I solar sail: From system design to on-orbit demonstration mission // Acta Astronautica. 2022. V. 192. P. 133-142.
Akyildiz I.F., Jornet J.M., Nie S. A new CubeSat design with reconfigurable multi-band radios for dynamic spectrum satellite communication networks // Ad Hoc Networks. 2019. V. 86. P. 166-178.
Marzioli P., Gugliermetti L., Santoni F., Delfini A., Piergentili F. Nardi L., Metelli G., Benve nuto E., Massa S., Bennici E. CultCube: Experiments in autonomous in-orbit cultivation onboard a 12-units CubeSat platform // Life Sciences in Space Research. 2020. V. 25. P. 42-52.
Ikeya K., Sakamoto H., Nakanishi H., Furuya H., Tomura T., Ide R., Iijima R., Iwasaki Y., Ohno K., Omoto K., Furuya Е., Hayashi T., Kato M., Koide S., Kurosaki M., Nakatsuka Y., Okuyama S. et al. Significance of 3U CubeSat OrigamiSat-1 for space demonstration of multifunctional deployable membrane // Acta Astronautica. 2020. V. 173. P. 363-377. 10.1016/j.actaastro. 2020.04.016.
Olatunji J.R., Acheson C., Szmigiel M., Wimbush S.C., Long N.J. Orbital and thermal model ling of a 3U CubeSat equipped with a high-temperature superconducting coil // Acta Astronautica. 2022. V. 190. P. 413-429.
Kovar P., Sommer M., Matthiae D., Reitz G. Measurement of cosmic radiation in LEO by 1U CubeSat // Radiation Measurements. 2020. V. 139. Art. 106471. 10.1016/j.radmeas. 2020.106471.
Padgen M.R., Chinn T.N., Friedericks C.R., Lera M.P., Chin M., Parra M.P., Piccini M.E., Ricco A.J., Spremo S.M. The EcAMSat fluidic system to study antibiotic resistance in low Earth orbit: Development and lessons learned from space flight // Acta Astronautica. 2020. V. 173. P. 449-459.
Вахрушев Н.В., Пьянков И.Н., Рязанов М.Н. Обзор форм-фактора спутников CubeSat // Студенческая наука XXI века. 2016. № 3(10). С. 100-106.
Гансвинд И.Н. Малые космические аппараты в дистанционном зондировании Земли // Исследовании Земли из космоса. 2019. № 5. C. 82-88.
Saeed N., Elzanaty A., Almorad H., Dahrouj H., Al-Naffouri T.Y., Alouini M-S. CubeSat Communications: Recent Advances and Future Challenges // IEEE Communications Surveys & Tutorials. 2020. V. 22 (3). P. 1839-1862.
CubeSat Design Specification Review 14.1. The CubeSat Program. Cal Poly SLO, 2022. 34 p. URL: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf (accessed: 07.09. 2022).
 Тепловое состояние малого спутника при различной плотности расположения электронных плат | Вестник Томского государственного университета. Математика и механика. 2023. № 82. DOI: 10.17223/19988621/82/6

Тепловое состояние малого спутника при различной плотности расположения электронных плат | Вестник Томского государственного университета. Математика и механика. 2023. № 82. DOI: 10.17223/19988621/82/6