Механическое поведение титановых сплавов при динамическом продавливании | Вестник Томского государственного университета. Математика и механика. 2024. № 89. DOI: 10.17223/19988621/89/11

Механическое поведение титановых сплавов при динамическом продавливании

Определение физико-механических характеристик материалов при высоких скоростях деформации играет ключевую роль в повышении адекватности и точности инженерного анализа конструкций, работаюшцх в экстремальных условиях. В данной работе представлена: результаты экспериментальных исследований деформации и разрушения тонколистового проката сплава Ti-5Al-2.5Sn при продавливании полусферическим индентором со скоростью 10, 5, 1 и 0,5 м/с и результата: численного имитационного моделирования испытаний. Результата: моделирования испытаний на динамическое продавливание пластин с использованием вязкопластической модели механического поведения повреждаемых сред показали возможность валидации модели с кинетикой повреждения для сложных напряженных состояний в условиях двухосного высокоскоростного растяжения. Полученные в расчетах формы трешцн и прогибы пластин аналогична: наблюдаемым в экспериментах при динамическом продавливании сплава.

Ключевые слова

титановые сплавы, испытание на продавливание, высокие скорости деформации, сложное напряженное состояние

Авторы

ФИООрганизацияДополнительноE-mail
Скрипняк Владимир ВладимировичТомский государственный университеткандидат физико-математических наук, доцент кафедры механики деформируемого твердого телаskrp2012@yandex.ru
Скрипняк Владимир АльбертовичТомский государственный университетдоктор физико-математических наук, профессор, заведующий кафедрой механики деформируемого твердого телаskrp2006@yandex.ru
Всего: 2

Ссылки

Skripnyak V.V., Skripnyak V.A. Mechanical behavior of alpha titanium alloys at high strain rates, elevated temperature, and under stress triaxiality // Metals. 2022. V. 12. Art. 1300.
Steinberg D.J., Cochran S.G., Guinan M.W. A constitutive model for metals applicable at high-strain rate // Journal of Applied Physics. 1980. V. 51. P. 1498-1504.
Zhang J., Zhao Y., Hixson R.S., Gray G.T., Wang L., Utsumi W., Takanori H. Thermal equations of state for titanium obtained by high pressure-temperature diffraction studies // Physical Review B. 2008. V. 78. Art. 054119.
Dabboussi W., Nemes J.A. Modeling of ductile fracture using the dynamic punch test // International Journal of Materials Science. 2005. V. 47. P. 1282-1299.
Sirvin Q., Velay V., Bonnaire R., Penazzi L. Mechanical behaviour modelling and finite element simulation of simple part of Ti-6Al-4V sheet under hot/warm stamping conditions // Journal of Manufacturing Processes. 2019. V. 38. P. 472-482.
Li H., Chen S.-F., Zhang S.-H., Xu Y., Song H.-W. Deformation characteristics, formability and springback control of Titanium alloy sheet at room temperature: a review // Materials. 2022. V. 15. Art. 5586.
Li X., Guo G., Xiao J., Song N., Li D. Constitutive modeling and the effects of strain-rate and temperature on the formability of Ti-6Al-4V alloy sheet // Materials & Design. 2014. V. 55. P. 325-334.
Skripnyak V.V., Iohim K. V., Skripnyak V.A. Mechanical behavior of titanium alloys at moderate strain rates characterized by the punch test technique // Materials. 2023. V. 16. Art. 416. 10.3390/ ma16010416.
Spulak N., Seidt J., Gilat A. Ductile fracture of 2024 aluminum under unequal biaxial in-plane tension and out-of-plane compression // Mechanics of Materials. 2024. V. 179. Art. 104585.
Hammer J.T., Liutkus T.J., Seidt J.D., Gilat A. Using Digital Image Correlation (DIC) in Dynamic Punch Tests // Experimental Mechanics. 2014. V. 55 (1). P. 201-210. 10.1007/ s11340-014-9924-9.
Скрипняк В.В., Иохим К.В., Скрипняк В.А. Локализация пластической деформации технически чистого титана в сложном напряженном состоянии при высокоскоростном растяжении // Вестник Томского государственного университета. Математика и механика, 2021. № 70. С. 89-102.
Skripnyak V. V., Skripnyak E.G., Skripnyak V.A. Fracture of titanium alloys at high strain rates and under stress triaxiality // Metals. 2020. V. 10. Art. 305.
Ghosh A.K., Hamilton C.H. Superplastic forming and diffusion bonding of titanium alloys // Defense Science Journal. 1986. V. 36. P. 153-177.
Tabie V.M., Li C., Saifu W., Li J., Xu X. Mechanical properties of near alpha titanium alloys for high-temperature applications - a review // Aircraft Engineering and Aerospace Technology. 2020. V. 92. P. 521-540.
Lu Z., Zhang X., Ji W., Wei W., Yao C., Han D. Investigation on the deformation mechanism of Ti-5Al-2.5Sn ELI titanium alloy at cryogenic and room temperatures // Materials Science and Engineering: A. 2021. V. 818. Art. 141380.
Tan M.J., Chen G.W., Thiruvarudchelvan S. High temperature deformation in Ti-5Al-2.5Sn alloy // Journal of Materials Processing Technology. 2007. V. 192-193. P. 434-438.
Jayaprakash M., Ping D.H., Yamabe-Mitarai Y. Enhanced yielding strength of near-а Ti-Al- Zr-Sn high temperature alloys // Materials Science and Engineering: A. 2015. V. 625. P. 131-139.
 Механическое поведение титановых сплавов при динамическом продавливании | Вестник Томского государственного университета. Математика и механика. 2024. № 89. DOI: 10.17223/19988621/89/11

Механическое поведение титановых сплавов при динамическом продавливании | Вестник Томского государственного университета. Математика и механика. 2024. № 89. DOI: 10.17223/19988621/89/11