Механические свойства композиционных материалов, полученных с применением СВС-порошков Al–TiB2 методом прямого лазерного выращивания
Проведены исследования механических свойств композиционных материалов, полученных с применением композиционных порошков Al-TiB2 методом прямого лазерного выращивания при различном расходе порошка. Установлено, что с увеличением расхода порошка наблюдается снижение твердости и прочности на сжатие композиционных материалов. Такая зависимость напрямую связана с пористостью композиционного материала, которая увеличивается с ростом расхода порошка в процессе лазерного выращивания. Представленные результаты демонстрируют, что использование порошка АІ-ТІВ2 как основного сырья в процессе прямого лазерного выращивания с расходом порошка 5.1 г/мин позволяет получить композиты с оптимальным показателем твердости и прочности на сжатие для выбранного диапазона изменения скорости расхода порошка. Полученные данные превосходят показатели традиционных сплавов на основе алюминия.
Ключевые слова
самораспространяющийся высокотемпературный синтез,
порошки,
композиционные материалы,
алюминий,
диборид титана,
прямое лазерное выращивание,
прочность,
твердостьАвторы
| Промахов Владимир Васильевич | Томский государственный университет | кандидат технических наук, директор НОЦ «Аддитивные технологии» | vvpromakhov@mail.ru |
| Матвеев Алексей Евгеньевич | Томский государственный университет; Томский научный центр Сибирского отделения Российской академии наук | младший научный сотрудник НОЦ «Аддитивные технологии»; младший научный сотрудник | cool.mr.c@mail.ru |
| Шульц Никита Александрович | Томский государственный университет | научный сотрудник НОЦ «Аддитивные технологии» | schulznikita97@gmail.com |
| Бахмат Владислав Романович | Томский государственный университет | аспирант физико-технического факультета | bakhmatvr@gmail.com |
| Туранов Тимур Эшанкулович | Томский государственный университет | аспирант физико-технического факультета | timur.kb2@icloud.com |
Всего: 5
Ссылки
Furumoto T., Oishi K., Abe S., Tsubouchi K., Yamaguchi M., Clare A.T. Evaluating the thermal characteristics of laser powder bed fusion // Journal of Materials Processing Technology. 2022. V. 299. Art. 117384. doi: 10.1016/j.jmatprotec.2021.117384.
Simchi A. Direct laser sintering of metal powders: Mechanism, kinetics and microstructural fea tures // Materials Science and Engineering: A. 2006. V. 428 (1-2). P. 148-158. doi: 10.1016/ j.msea.2006.04.117.
Wang X., Gong X., Chou K. Review on powder-bed laser additive manufacturing of Inconel parts // Proceedings of the Institution of Mechanical Engineers, Part Б: Journal of Engineering Manufacture. 2017. V. 231 (11). P. 1890-1903. doi: 10.1177/09544054156198.
Ezugwu E.O., Bonney J., Yamane Y. An overview of the machinability of aeroengine alloys // Journal of Materials Processing Technology. 2003. V. 134 (2). P. 233-253. doi: 10.1016/S0924-0136(02)01042-7.
Philips N.R., Carl M., Cunningham N.J. New opportunities in refractory alloys // Metallurgical and Materials Transactions A. 2020. V. 51. P. 3299-3310. doi: 10.1007/s11661-020-05803-3.
Nyamekye P., Golroudbrary S.R., Piili H., Kraslawski A., Luukka P. Impact of additive manu facturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industries // Advances in Industrial and Manufacturing Engineering. 2023. V. 6. Art. 100112. doi: 10.1016/j.aime.2023.100112.
Mussatto A., Ahad I.U., Mousavian R.T., Delaure Y., Brabazon D. Advanced production routes for metal matrix composites // Engineering reports. 2021. V. 3 (5). e12330. doi: 10.1002/eng2.12330.
Joost W.J. Reducing vehicle weight and improving US energy efficiency using integrated com putational materials engineering // JOM. 2012. V. 64. P. 1032-1038. doi: 10.1007/s11837-012-0424-z.
Hashim J., Looney L., Hashmi M.S.J. Metal matrix composites: production by the stir casting method // Journal of Materials Processing Technology. 1999. V. 92. P. 1-7. DOI: 10.1016/ S0924-0136(99)00118-1.
Tjong S.C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties // Advanced engineering materials. 2007. V. 9 (8). P. 639-652. doi: 10.1002/adem.200700106.
Rawal S.P. Metal-matrix composites for space applications // JOM. 2001. V. 53 (4). P. 14-17. doi: 10.1007/s11837-001-0139-z.
Matveev A., Promakhov V., Schulz N., Bakhmat V., Belchikov I. Structure and phase composition of SHS composites based on Al-Ti-B system with different Al content // Ceramics International. 2024. V. 50 (1). P. 503-511. doi: 10.1016/j.ceramint.2023.10.126.
Matveev A., Promakhov V., Schulz N., Bakhmat V., Turanov T. Nano-and Submicron-Sized TiB2 Particles in Al-TiB2 Composite Produced in Semi-Industrial Self-Propagating High-Temperature Synthesis Conditions // Metals. 2024. V. 14 (5). Art. 511. doi: 10.3390/met14050511.
Sun Q., Yang M., Jiang Y., Lei L., Zhang Y. Achieving excellent corrosion resistance properties of 7075 Al alloy via ultrasonic surface rolling treatment // Journal of Alloys and Compounds. 2022. V. 911. Art. 165009. doi: 10.1016/j.jallcom.2022.165009.
Zheng Y.S., Tang G.Y., Kuang J., Zheng X.P. Effect of electropulse on solid solution treatment of 6061 aluminum alloy // Journal of Alloys and Compounds. 2014. V. 615. P. 849-853. doi: 10.1016/j.jallcom.2014.07.062.
Tan C.F., Radzai S.M. Effect of hardness test on precipitation hardening aluminium alloy 6061-T6 // Chiang Mai Journal of Science. 2009. V. 36 (3). P. 276-286.
Aliyah A N., Anawati A. Effect of Heat Treatment on Microstructure and mechanical hardness of aluminum alloy AA7075 // IOP conference series: Materials Science and Engineering. 2019. V. 541 (1). Art. 012007. doi: 10.1088/1757-899X/541/1/012007.
Akbari M.K., Baharvandi H.R., Mirzaee O. Nano-sized aluminum oxide reinforced commercial casting A356 alloy matrix: Evaluation of hardness, wear resistance and compressive strength focusing on particle distribution in aluminum matrix // Composites Part B: Engineering. 2013. V. 52. P. 262-268. doi: 10.1016/j.compositesb.2013.04.038.
Wang Y.N., Huang J.C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy // Acta Materialia. 2007. V. 55 (3). P. 897-905. doi: 10.1016/j.actamat.2006.09.010.
Селиховкин М.А., Ахмадиева А.А., Жуков И.А., Марченко Е.С., Хрусталев А.П. Исследование влияния наночастиц алмаза на структуру и механическое поведение сплава Mg-Ca-Zn // Вестник Томского государственного университета. Математика и механика. 2022. № 79. С. 152-161. doi: 10.17223/19988621/79/13.
Zhang Y., Bandyopadhyay A. Influence of compositionally graded interface on microstructure and compressive deformation of 316L stainless steel to Al12Si aluminum alloy bimetallic structures // ACS Applied Materials & Interfaces. 2021. V. 13 (7). P. 9174-9185. doi: 10.1021/acsami.0c21478.
Li W., Yang Y., Liu J., Zhou Y., Li M., Wen S., Wei Q., Yan C., Shi Y. Enhanced nanohardness and new insights into texture evolution and phase transformation of TiAl/TiB2 in-situ metal matrix composites prepared via selective laser melting // Acta Materialia. 2017. V. 136. P. 90104. doi: 10.1016/j.actamat.2017.07.003.
Chen L., Sun Y., Li L., Ren Y., Ren X. In situ TiC/Inconel 625 nanocomposites fabricated by selective laser melting: Densification behavior, microstructure evolution, and wear properties // Applied Surface Science. 2020. V. 518. Art. 145981. doi: 10.1016/j.apsusc.2020.145981.