Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 90. DOI: 10.17223/19988621/90/12

Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries

The initial-boundary value problem of a one-dimensional viscous fluid flow in a deformable viscous porous medium with permeable boundaries is considered. The governing equations are the equations of mass conservation for each phase, the equation of momentum conservation for a liquid phase in terms of Darcy’s law, the equation of momentum conservation for the whole system, and the rheological equation for porosity. The original system of equations in the Lagrange variables is reduced to a third-order equation for the porosity function. The first part of this paper presents the formulation of the problem, the definition of the classical solution to the considered problem, and the existence and uniqueness theorem for the problem of Holder classes. In the second part of this paper, the local theorem of existence and uniqueness for the problem of Holder classes is proved for an incompressible fluid using the Tikhonov-Schauder fixed-point theorem. The physical principle of the maximum porosity function is determined.

Download file
Counter downloads: 8

Keywords

Darcy's law, filtration, poroelasticity, local solvability, porosity

Authors

NameOrganizationE-mail
Papin Aleksandr A.Altai State Universitypapin@math.asu.ru
Tokareva Margarita A.Altai State Universitytma25@mail.ru
Всего: 2

References

Ivanov M.I., Kremer I.A., Laevsky Y.M. On non-uniqueness of pressures in problems of fluid filtration in fractured-porous media // Journal of Computational and Applied Mathematics. 2023. V. 425. Art. 115052.
Head M., Hickey J., Thompson J., Gottsmann J., Fournier N. Rheological Controls on Magma Reservoir Failure in a Thermo-Viscoelastic Crust // Journal of Geophysical Research: Solid Earth. 2022. V. 127 (7).
Lee J.J.E. Modelling and Simulation of Compacting Sedimentary Basins. University of Ox ford, 2019.
Исламов Д.Ф., Рамазанов А.Ш. Исследование неизотермической двумерной фильтрации в слоистом пласте // Вестник Томского государственного университета. Математика и механика. 2022. № 75. С. 100-112.
Вирц Р.А. Численное решение двумерной задачи фильтрации жидкости в деформируе мой пористой среде // Известия Алтайского государственного университета. Математика и механика. 2021. № 1. P. 88-92. (117).
Morency C., Huismans R.S., Beaumont C., Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability // Journal of Geophysical Research. 2007. V. 112 (B10).
Fowler A. Mathematical Geoscience. London: Springer-Verlag London Limited, 2011.
Tokareva M.A., Papin A.A., Virts R.A. Filtration of liquid in a non-isothermal viscous porous medium // Journal of Siberian Federal University - Mathematics and Physics. 2020. V. 13 (6). P. 763-773.
Koleva M.N., Vulkov L.G. Numerical analysis of one dimensional motion of magma without mass forces // Journal of Computational and Applied Mathematics. 2020. V. 366.
Ладыженская О.А., Солонников В.А., Уральцева Н.М. Линейные и квазилинейные уравнения параболического типа. М.: Наука, 1967. 736 с.
Papin A.A., Tokareva M.A. On the existence of global solution of the system of equations of one-dimensional motion of a viscous liquid in a deformable viscous porous medium // Siberian Electronic Mathematical Reports. 2021. V. 18 (2). P. 1397-1422.
Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. Новосибирск: Наука, 1983.
Ладыженская О.А., Уральцева Н.М. Линейные и квазилинейные уравнения эллиптического типа. М.: Наука, 1973.
 Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 90. DOI: 10.17223/19988621/90/12

Solvability of a one-dimensional problem of fluid flow in poroelastic medium with permeable boundaries | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2024. № 90. DOI: 10.17223/19988621/90/12

Download full-text version
Counter downloads: 147