Linear homeomorphisms of topological almost modules of continuous functions and coincidence of dimension | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Linear homeomorphisms of topological almost modules of continuous functions and coincidence of dimension

In this paper, the space of continuous functions C (X, G), where G is a topological space, is considered. If the set G is endowed with an almost ring structure, the set C (X, G) is a topological almost module. It is proved that the dimension dim of the topological space X is an isomorphic invariant of its topological almost module C (X, I), where I = [0, 1) is a naturally defined almost ring. This statement is based on ideas of G.G. Pestov's work «The coincidence of dimension dim of /-equivalent topological spaces», where the following theorem was formulated: if C (X, R) and C (Y, R) are linearly homeomorphic spaces, then dim X = dim Y. Here, X and Y are arbitrary totally regular spaces, and C (X, R) is the space of all continuous real functions on X with the pointwise convergence topology. Note that Pestov's theorem was generalized to the case of uniform homeomorphisms by S. P. Gul'ko.

Download file
Counter downloads: 320

Keywords

почти кольцо, топологический почти модуль, непрерывный гомоморфизм, пространство непрерывных функций, топология поточечной сходимости, almost ring, topological almost module, continuous homomorphism, space of continuous functions, pointwise convergence topology

Authors

NameOrganizationE-mail
Titova Anastasia V.Tomsk State Universityasya_mis@mail.ru
Всего: 1

References

Энгелькинг Р. Общая топология. М.: Мир, 1986.
Пестов В.Г. Совпадение размерностей dim /-эквивалентных топологических пространств // ДАН СССР. 1982. Т. 266. № 3. С. 553-556.
Павловский Д.С. О пространствах непрерывных функций // ДАН СССР. 1980. Т. 253. № 1. С. 38-41.
Архангельский А.В. Принцип т-аппроксимации и признак равенства размерности бикомпактов // ДАН СССР. 1980. Т. 252. № 4. С. 777-780.
Замбахидзе Л.Г. О соотношениях между размерностями и кардинальнозначными функциями пространств, погружаемых в пространства специального вида // Сообщ. АН ГСССР. 1980. Т. 100. № 3. С. 557-560.
Гулько С.П. О равномерных гомеоморфизмах пространств непрерывных функций // Труды Математического института РАН. 1992. Т. 193. С. 82-88.
Архангельский А.В. Топологические пространства функций. М.: Изд-во МГУ, 1989. С. 25.
 Linear homeomorphisms of topological almost modules of continuous functions and coincidence of dimension | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Linear homeomorphisms of topological almost modules of continuous functions and coincidence of dimension | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2014. № 4(30).

Download full-text version
Counter downloads: 811