A numerical method for solving the coefficient inverse problem for diffusion-convection-reaction equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/6

A numerical method for solving the coefficient inverse problem for diffusion-convection-reaction equation

The two inverse problems on the restoration of coefficients for nonstationary one-dimensional diffusion - convection - reaction equation are considered. The first problem is intended to determine the convective transfer coefficient, which depends only on the time in accordance with the integral overdetermination condition. The second problem allows one to obtain the reaction rate coefficient depending on the time according to the integral overdetermination condition. To solve these problems, at first, a discretization of the time derivative is implemented and the explicit-implicit schemes are used to approximate the operators in both problems. For convective transfer operator in the first problem and reaction operator in the second problem, the explicit sheme was used. For the rest of operators in these problems, the implicit sheme was applied. As a result, both problems are reduced to the differential-difference problems with respect to the functions that depend on the spatial variable. For numerical solution of the problems obtained, a non-iterative computational algorithm is proposed. It is based on reducing of the differential-difference problem to two direct boundary-value problems and to a linear equation with respect to unknown coefficient. The proposed method was used to carry out the numerical experiments for the model problems.

Download file
Counter downloads: 234

Keywords

уравнение диффузии - конвекции - реакции, коэффициентная обратная задача, интегральное условие переопределения, дифференциально-разностная задача, явно-неявные схемы, diffusion - convection - reaction equation, coefficient inverse problem, integral overdetermination condition, differential-difference problem, explicit-implicit schemes

Authors

NameOrganizationE-mail
Gamzaev Khanlar M.O.Azerbaijan State Oil and Industry Universityxan.h@rambler.ru
Всего: 1

References

Андерсон Д., Таннехил Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. М.: Мир, 1990. Т. 1. 384 с.
Уизем Дж.Б. Линейные и нелинейные волны. М.: Мир, 1977. 638 с.
Пасконов В.М., Полежаев В.И., Чудов Л.А. Численное моделирование процессов тепло-и массообмена. М.: Наука, 1984. 288 с.
Роуч П. Вычислительная гидродинамика. М.: Мир, 1980. 528 с.
Алифанов О.М., Артюхин Е.А., Румянцев С.В. Экстремальные методы решения некорректных задач. М.: Наука, 1988. 288 с.
Самарский А.А., Вабищевич П.Н. Численные методы решения обратных задач математической физики. М.: Издательство ЛКИ, 2009. 480 с.
Кабанихин С.И. Обратные и некорректные задачи. Новосибирск: Сибирское научное издательство, 2009. 457 с.
Иванчов Н.И., Побыривска Н.В. Об определении двух зависящих от времени коэффициентов в параболическом уравнении // Сиб. матем. журн. 2002. Т. 43. № 2. C. 406-413.
Камынин В.Л. Обратная задача определения младшего коэффициента в параболическом уравнении при условии интегрального наблюдения // Матем. заметки. 2013. Т. 94. Вып. 2. C. 207-2175.
Костин А.Б. Восстановление коэффициента перед ut в уравнении теплопроводности по условию нелокального наблюдения по времени // Жур. вычисл. матем. и матем. физики. 2015. Т. 55. № 1. С. 89-104.
Кожанов А.И. Параболические уравнения с неизвестными коэффициентами, зависящими от времени // Журн. вычисл. матем. и матем. физ. 2017. Т. 57. № 6. С. 961-972.
Liu Yang, Jian-Ning Yu, Zui-Cha Deng. An inverse problem of identifying the coefficient of parabolic equation //Applied Mathematical Modelling. 2008. V. 32. Iss. 10. P. 1984-1995.
Nazim B. Kerimov, Mansur I. Ismailov. An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions // J. Mathematical Analysis and Applications. 2012. V. 396. Iss. 2. P. 546-554.
Engl H.W., Zou J. A new approach to convergence rates analysis of Tikhonov regularization for parameter identification in heat conduction // Inverse Problems. 2000. V. 16. P. 1907-1923.
Deng Z.C., Qian K., Rao X.B., Yang L. and Luo G.W. An inverse problem of identifying the source coefficient in a degenerate heat equation // Inverse Problems in Science and Engineering. 2015. 23(3). P. 498-517.
Dehghan M., Tatari M. Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions // Math. Comput. Modell. 2006. V. 44. pp. 1160-1168.
Вабищевич П.Н., Васильева М.В. Явно-неявные схемы для задач конвекции - диффузии - реакции // Сиб. журн. вычисл. матем. 2012. Т. 15. № 4. C. 359-369.
 A numerical method for solving the coefficient inverse problem for diffusion-convection-reaction equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/6

A numerical method for solving the coefficient inverse problem for diffusion-convection-reaction equation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2017. № 50. DOI: 10.17223/19988621/50/6

Download full-text version
Counter downloads: 490