Calculation of the permeability of the stackings of multi-walled nanotubes
Carbon nanotubes (CNTs) with open tips are ideal tunnels for molecules and atoms to move at an average velocity exceeding velocity at the tunnel entrance. A membrane with unique physical properties can be obtained by stackable packing of CNTs. The performance of such membrane is essentially higher than that of the membranes whose mass transfer rate is limited by diffusion transfer. In this paper, a quasi-deterministic description of the molecular penetration through an ideal tunnel structure, in particular, through the regular stacking of carbon nanotubes with open tips, is presented. The mathematical model is based on the fundamental concepts of classical mechanics and is related to development of the barrier theory for the motion of a representative molecule of penetrating particles. Determining of the barrier energy is implemented using a modified Lennard - Jones potential that provides a convergence of the integrals over infinite surfaces, which are perpendicular to the main direction of molecular transport. It is revealed that there exists a minimum velocity limit for a representative molecule motion trough the energy barrier found. The values of velocities exceeding the stated limit provide a transparent barrier for molecules. Therefore, the fraction of passing molecules is determined as integral of the Maxwell distribution function with the lower limit equal to the minimum rate of penetration. It is also discovered that three-walled tubes provide higher degree of separation in contrast to the tubes with fewer layers.
Keywords
потенциал взаимодействия молекула - нанотрубка,
укладка трубок,
проницаемость укладки,
селективность разделения метан-гелиевой смеси,
potential of "molecule-nanotube" interaction,
stacking of tubes,
stacking permeability,
selectivity of the separation of methane-helium mixturesAuthors
Bubenchikov Mikhail A. | Gazprom Transgaz Tomsk Ltd | michael121@mail.ru |
Kolykhalova Olga E. | Tomsk State University | ms.friol@mail.ru |
Usenko Olesya V. | Tomsk State University | usenko.olesya@yandex.ru |
Всего: 3
References
Lima J.R.F. Controlling the energy gap of graphene by Fermi velocity engineering // Phys. Lett. A. 2015. V. 379. No. 3. P. 179-182. DOI: 10.1016/j.physleta.2014.11.005.
Radchenko T.M. Effects of nitrogen-doping configurations with vacancies on conductivity in graphene / T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, Yu.I. Prylutskyy // Phys. Lett. A. 2014. V. 378. No. 30-31. P. 2270-2274. DOI: 10.1016/j.physleta.2014.05.022.
Masumian E. Structural, electronic properties, and quantum capacitance of B, N and P-doped armchair carbon nanotubes / E. Masumian, S.M. Hashemianzadeh, A. Nowroozi // Phys. Lett. A. 2016. V. 380. No. 41. P. 3378-3383. DOI: 10.1016/j.physleta.2016.07.067.
Khoshnevisan B. Photoconductivity enhancement in alkali metal doped multiwall carbon nanotubes / B. Khoshnevisan, M. Zareie Mahmoudabadi, M. Izadifard // Phys. Lett. A. 2013. V. 377. No. 42. P. 3033-3037. DOI: 10.1016/j.physleta.2013.09.029.
Guo Z.H. Dissociation of methane on the surface of charged defective carbon nanotubes / Z.H. Guo, X.H. Yan, Y. Xiao // Phys. Lett. A. 2010. V. 374. No. 13-14. P. 1534-1538. DOI: 10.1016/j.physleta.2010.01.060.
Katin K.P. Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study / K.P. Katin, V.S. Prudkovskiy, M.M. Maslov // Phys. Lett. A. 2017. V. 381. No. 33. P. 2686-2690. DOI: 10.1016/j.physleta.2017.06.017.
Liu L. Impact of H2O on CO2 separation from natural gas: comparison of carbon nanotubes and disordered carbon / L. Liu, D. Nicholson, S.K. Bhatia // J. Phys. Chem. C. 2015. V. 119. P. 407-419. DOI: 10.1021/jp5099987.
Liu L. Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: A molecular simulation study / L. Liu, D. Nicholson, S.K. Bhatia // Chem. Eng. Sci. 2015. V. 121. P. 268-278. DOI: 10.1016/j.ces.2014.07.041.
Wong C.H. Compressive characteristics of single walled carbon nanotube with water interactions investigated by using molecular dynamics simulation / C.H. Wong, V. Vijayaraghavan // Phys. Lett. A. 2014. V. 378. No. 5-6. P. 570-576. DOI: 10.1016/j.physleta.2013.12.026.
Mortazavi B. Nitrogen doping and vacancy effects on the mechanical properties of graphene: A molecular dynamics study / B. Mortazavi, S. Ahzi, V. Toniazzo, Y. Remond // Phys. Lett. A. 2012. V. 376. No. 12-13. P. 1146-1153. DOI: 10.1016/j.physleta.2011.11.034.
Wang C.Y. Circumferential nonlocal effect on the buckling and vibration of nanotubes / C.Y. Wang, X.H. Li, Y. Luo // Phys. Lett. A. 2016. V. 380. No. 16. P. 1455-1461. DOI: 10.1016/j.physleta.2016.02.023.
Wang Q. Buckling of carbon nanotubes wrapped by polyethylene molecules // Phys. Lett. A. 2011. V. 375. No. 3. P. 624-627. DOI: 10.1016/j.physleta.2010.12.005.
Zhang Y.Y. Thermal conductivity of defective graphene / Y.Y. Zhang, Y. Cheng, Q.X. Pei, C.M. Wang, Y. Xiang // Phys. Lett. A. 2012. V. 376. No. 47-48. P. 3668-3672. DOI: 10.1016/j.physleta.2012.10.048.
Liu C. Pressure effects on the thermal resistance of few-layer graphene / C. Liu, Z. Wei, W. Chen, K. Bi, J. Yang,Y. Chen // Phys. Lett. A. 2016. V. 380. No. 1-2. P. 248-254. DOI: 10.1016/j.physleta.2015.09.007.
Lin R. Mixed-matrix membranes with metal-organic framework decorated CNT fillers for efficient CO2 separation / R. Lin, L. Ge, S. Liu, V. Rudolph, Z. Zhu // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 14750-14757. DOI: 10.1021/acsami.5b02680.
Ahmad A.L. A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation / A.L. Ahmad, Z.A. Jawad, S.C. Low, S.H.S. Zein // Journal of Membrane Science. 2014. V. 451. P. 55-66.
He X. Hybrid fixed-site-carrier membranes for CO2 removal from high pressure natural gas: Membrane optimization and process condition investigation / X. He, T.-J. Kim, M.-B. Hagg // J. Membr. Sci. 2014. V. 470. P. 266-274. DOI: 10.1016/j.memsci.2014.07.016.
Borka Jovanovic V. Channeling of protons through radial deformed carbon nanotubes / V. Borka Jovanovic, D. Borka, S.M.D. Galijas // Phys. Lett. A. 2017. V. 381. No. 19. P. 1687-1692. DOI: 10.1016/j.physleta.2017.03.029.
Intrchom W. Analytical sample preparation, preconcentration and chromatographic separation on carbon nanotubes / W. Intrchom, S. Mitra // Curr. Opin. in Chem. Eng. 2017. V. 16. No. 102. P. 114. DOI: 10.1016/j.coche.2017.05.001.
Zhang L. Preparation and transport performances of high-density, aligned carbon nanotube membranes / L. Zhang, B. Zhao, C. Jiang, J. Yang, G. Zheng // Nanoscale Res Lett. 2015. V. 10. P. 266. DOI: 10.1186/s11671-015-0970-8.
Potekaev A.I. New physical ideas and method of description and calculation of resistance to motion of small particles in a gaseous medium / A.I. Potekaev, A.M. Bubenchikov, M.A. Bubenchikov // Russ. Phys. J. 2013. V. 55. No. 12. P. 1434-1443. DOI: 10.1007/ s11182-013-9977-8.
Bubenchikov M.A. Three fundamental problems of molecular statistics / M.A. Bubenchikov, A.I. Potekaev, A.M. Bubenchikov // Russ. Phys. J. 2013. V. 56. No. 3. P. 341-348. DOI: 10.1007/s11182-013-0038-0.
Bubenchikov M.A. Thermophoresis of ultrafine and nanosized particles / M.A. Bubenchikov, A.I. Potekaev, A.M. Bubenchikov // Russ. Phys. J. 2013. V. 56. No. 7. P. 785-790. DOI: 10.1007/s11182-013-0100-y.
Bubenchikov A.M. The potential field of carbon bodies as a basis for sorption properties of barrier gas systems / A.M. Bubenchikov, M.A. Bubenchikov, A.I. Potekaev, E.Ye. Libin, Yu.P. Hudobina // Russ. Phys. J. 2015. V. 58. No. 7. P. 882-888. DOI: 10.1007/ s11182-015-0586-6.
Bubenchikov A.M. Separation of methane-helium mixture by porous graphite / A.M. Bubenchikov, M.A. Bubenchikov, E.A. Tarasov, O.V. Usenko, A.S. Chelnokova // Tomsk State University Journal of Mathematics and Mechanics. 2017. No. 45. P. 80-87. DOI: 10.17223/19988621/45/7.
Андрющенко В.А., Рудяк В.Я. Самодиффузия молекул флюида в наноканалах // Вестн. Томск. гос. ун-та. Математика и механика. 2012. № 2. С. 63-66
Потеряева В.А., Усенко О.В., Шерстобитов А.А. Дифференциальная проницаемость ультратонкого пористого слоя монодисперсных наночастиц // Вестник Томского государственного университета. Математика и механика. 2015. № 2(34). С. 96-102.