On numerical estimates of the parameters of localized plasticity during metal tension | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/8

On numerical estimates of the parameters of localized plasticity during metal tension

The article considers the results of a study of the nature and quantitative characteristics of localized plastic flow of metals under uniaxial tension using speckle photography method. It has been revealed that, in the solid bodies, plastic deformation tends to localize on the macro-scale level ranging from the yield stress to the failure. Localization phenomenon represents a spontaneous layering of the material into non-deforming and actively deforming volumes, which are arranged over the test sample in the form of specified patterns. Each pattern transforms consistently in accordance with a plastic flow development. Moreover, the patterns are defined by the law of strain hardening acting at the given stage of plastic flow. The patterns appear in the following order: (i) switching autowave; (ii) phase autowaves; and (iii) stationary dissipative structures. At the pre-fracture stage, the collapse of autowaves is observed. A quantitative analysis of the results obtained has been carried out. The elastoplastic strain invariant has been determined experimentally. The nature of this invariant has been also discussed. According to the latter, development of the plastic deformation occurs due to autowave processes of localized plasticity that, in turn, depends on the elastic deformation. Hence, both types of deformation are interdependent and defined by the plastic flow diagram. It has been demonstrated that a theoretical simulation can be used to predict the parameters of autowaves of localized plastic flow in deformable alloys. In the considered approach, the plastic deformation is regarded as a result of self-organization process, which occurs in an active deformed system with nonlinear structural defects.

Download file
Counter downloads: 174

Keywords

локализация деформации, пластическое течение, автоволны, двухэкспозиционная спекл-фотография, localization of deformation, plastic flow, autowaves, double-exposure speckle photography

Authors

NameOrganizationE-mail
Zuev Lev B.Institute of Strength Physics and Materials Science SB RAS; Tomsk State Universitylbz@ispms.ru
Barannikova Svetlana A.Institute of Strength Physics and Materials Science SB RAS; Tomsk State Universitybsa@ispms.tsc.ru
Li Yuliya V.Institute of Strength Physics and Materials Science SB RASjul2207@mail.ru
Zharmukhambetova Albina M.Tomsk State Universitybsa@ispms.tsc.ru
Всего: 4

References

Зуев Л.Б., Данилов В.И., Баранникова С.А. Физика макролокализации пластического течения. Новосибирск.: Наука, 2008. 327 с.
Порубов А.В. Локализация нелинейных волн деформации. М.: Физматлит, 2009. 208 с.
Николис Г., Пригожин И. Познание сложного. М.: Мир, 1990. 342 с.
Zuev L.B., Gorbatenko V.V., Pavlichev K.V. Elaboration of speckle photography techniques for plastic flow analyses // Measurement Sci. Tech. 2010. V. 21. P. 054014-1.
McDonald R.J., Efstathiou C., Curath P., Engng J. The wave-like plastic deformation of single crystals copper // Mater. Technol. 2009. V. 131. P. 692.
Fressengeas C., Beaudoin A., Entemeyer D. Dislocation transport and intermittency in the plasticity of crystalline solids // Phys. Rev. 2009. V. B. 79. P. 014108-1.
Третьякова Т.В., Третьяков М.П., Вильдеман В.Э. Оценка точности измерений с использованием видеосистемы анализа полей перемещений и деформаций // Вестник ПермГТУ. Механика. 2011. T 2. С. 92.
Шестопалов Л.М. Деформирование металлов и волны пластичности в них. М.-Л.: Изд-во АН СССР, 1958. 268 с.
Баранникова С.А. Дисперсия волн локализации пластической деформации // Письма в ЖТФ. 2004. Т. 30. № 8. С. 75-80.
Зуев Л.Б., Зариковская Н.В., Баранникова С.А., Шляхова Г.В. Автоволны локализации пластического течения и соотношение Холла - Петча в поликристаллическом Al // Ме-талл^шим и новейшие технологии. 2013. T. 35. № 1. С. 113-127.
Данилов В.И., Заводчиков С.Ю., Баранникова С.А., Зыков И.Ю., Зуев Л.Б. Прямое наблюдение автоволны пластической деформации в циркониевом сплаве // Письма в ЖТФ. 1998. Т. 24. № 1. С. 26-30.
Трубецков Д.И., Мчедлова Е.С., Красичков Л.В. Введение в теорию самоорганизации открытых систем. М.: Физматлит, 2002. 198 с.
Малыгин Г.А. Процессы самоорганизации дислокаций и пластичность кристаллов // УФН. 1999. Т. 169. № 9. С. 979.
Владимиров В.И. Вопросы теории дефектов в кристаллах. Л.: Наука, 1987. 43 с.
Бабичев А.П., Бабушкина Н.А., Братковский А.М. Физические величины. Справочник. М.: Энергоатомиздат. 1991. 1232 с.
Barannikova S.A., Ponomareva A.V., Zuev L.B., Vekilov Yu.Kh., Abrikosov I.A. Significant correlation between macroscopic and microscopic parameters for the description of localized plastic flow auto-waves in deforming alloys // Solid State Com. 2012. V. 152. P. 784-787.
Martin R.M. Electronic structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge 2004. 624 p.
Vitos L., Abrikosov I.A. Anisotropic Lattice Distortions in Random Alloys from First-Principles Theory // Johansson B. Phys. Rev. Lett. 2001. V. 87. P. 156401-156404.
Moruzzi V.L., Janak J.F. Calculated thermal properties of metals // Phys. Rev. 1988. V. B. 37. P. 790.
Walle A. van de, Ceder G. The effect of lattice vibrations on substitutional alloy thermodynamics // Rev. Mod. Phys. 2002. V. 74. P. 11.
Abrikosov I. A., Ruban A. V., Ya. Kats D., Vekilov Yu. H. Electronic structure, thermodynamic and thermal properties of Ni-Al disordered alloys from LMTO-CPA- DFT calculations // J. Phys.: Condens. Matter. 1993. V. 5. P. 1271.
Абрикосов И.А., Никонов А.Ю., Пономарева А.В. и др. Теоретическое моделирование термодинамических и механических свойст чистых компонентов сплавов на основе Ti и Zr с использованием метода точных МТ-орбиталей // Изв. вузов. Физика. 2013. T. 56. № 9. С. 52-59.
Barannikova S.A., ZharmukhamЬetova A.M., Nikonov A.Yu., et al. Influence of stresses on structure and properties of Ti and Zr-based alloys from first-principles simulations // IOP Conf. Ser.: Mater. Sci. Eng. 2015. V. 71. P. 012078. DOI 10.1088/1757-899X/71/1/012078.
Abrikosov I.A., Ponomareva A.V., Nikonov A.Yu., et al. Theoretical description of pressure-induced phase transitions: a case study of Ti-V alloys // High Pressure Research. 2015. V. 35. P. 42-48. D0I10.1080/08957959.2014.992896.
Al'shits V.I., Indenbom V.L. Dislocations in Solids. Amsterdam: Elsevier, 1986. 43p.
Ройтбурд А.Л. Физика деформационного упрочнения монокристаллов. Киев.: Наукова думка.1972. 526 с.
Мэрди Дж. Модели популяций // Математическое моделирование. М.: Мир. 1979. 109 с.
Zuev L.B., Semukhin B.S. Some acoustic properties of a deforming medium // Phil. Mag. 2002. V. 82. No. 6. P. 1183-1193.
Томас Т. Пластическое течение и разрушение в твердых телах. М.: Мир? 1964. 308 с.
 On numerical estimates of the parameters of localized plasticity during metal tension | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/8

On numerical estimates of the parameters of localized plasticity during metal tension | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/8

Download full-text version
Counter downloads: 1230