Analysis of interaction between solids of revolution and a beam corresponding to the Kelvin model | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 65. DOI: 10.17223/19988621/65/7

Analysis of interaction between solids of revolution and a beam corresponding to the Kelvin model

Various formulations of the problem of a disk rolling on a plane have been studied by different researchers. In this paper, the effect of longitudinal oscillations of a beam, caused by the circular motion of a solid disk along the beam, on the mode of the disk motion is analyzed. Two versions of properties of a beam material are considered: an elastic beam and a viscoelastic beam corresponding to the Kelvin rheological model with relaxation and creep properties. The Fourier method is used as a method of separation of variables in the problem solving. When testing the beam and assuming its hereditary deformation, the rheological response force is introduced, which depends on longitudinal strains and their rate. The obtained result is presented as functions of time, which are adaptable for numerical integration. It is shown that beam oscillations arise from the disk motion and can be considered as self-oscillations.

Download file
Counter downloads: 113

Keywords

модель Кельвина, продольные колебания, интегральное преобразование Лапласа, интегродифференциальные уравнения, Kelvin model, longitudinal oscillations, Laplace integral transform, integro-differential equations

Authors

NameOrganizationE-mail
Kalmova Mariya A.Samara State Technical Universitykalmova@inbox.ru
Ratmanova Olesya V.Samara State Technical Universityolesya654@yandex.ru
Всего: 2

References

Ишлинский А.Ю. Продольные колебания стержня при наличии линейного закона последствия и релаксации // ПММ. 1940. Т. 4. Вып. 1. C. 18-21.
Бадалов Ф.Б. Динамические гасители колебаний наследственно-деформируемых систем. Ташкент: ТашГАИ, 2003. 81 с.
Неймарк Ю.И., Фуфаев Н.А. Динамика неголономных систем. М., 1967. 483 с.
Вильке В.Г. Теория качения твердого колеса по деформируемому рельсу // Вестн. Моск. ун-та. Сер. 1. Математика, механика. 1997. № 1. С. 48-55.
Chirkunov Yu. A. Nonlinear longitudinal vibrations of a viscoelastic rod in the kelvin model. Novosibirsk: Publishing House of NSTU, 2015. V. 79. No. 5.
Miftakhova A.R. Contact Problems for Rolling with Slip for Viscoelastic Solids // Journal of Friction and Wear. 2018. V. 39. No. 1. P. 55-61.
Bogomolov V., Raznitsyn I. Оп equivalence of kelvin and maxwell multielement models // Avtomobil'nyy transport (Kharkov). 2015. V. 37. C. 175-181.
Работное Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 383 с.
Москеитин В.В. Сопротивление вязкоупругих материалов. М.: Наука, 1972. 327 с.
Колтунов М.А. Ползучесть и релаксация. М.: Высшая школа, 1976. 276 с.
Ишлинский А.Ю. Об уравнениях пространственного деформирования не вполне упругих и вязкопластических тел // Изв. АН СССР. ОТН. 1945. № 3. С. 24-35.
Kalmova М., Pavlov G. Analyzing the influence of the disk motion on longitudinal oscillations of a beam with rheological properties. XXVII R-S-P Seminar 2018, Theoretical Foundation of Civil Engineering. MATEC Web of Conferences 196, 01004 (2018).
Ржаницын А.Р. Некоторые вопросы механики систем, деформирующихся во времени. М.: Гостехиздат, 1949. 248 с.
 Analysis of interaction between solids of revolution and a beam corresponding to the Kelvin model | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 65. DOI: 10.17223/19988621/65/7

Analysis of interaction between solids of revolution and a beam corresponding to the Kelvin model | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 65. DOI: 10.17223/19988621/65/7

Download full-text version
Counter downloads: 403