An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 74. DOI: 10.17223/19988621/74/3

An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance

An approximate analytical solution of the potential distribution in a two-dimensional circle with a radially inhomogeneous conductivity is obtained for the boundary conditions of the full electrode model, which takes into account the contact resistance of the electrodes at a given current strength. The solution is obtained by separating variables and using Fourier series, for the coefficients of which it is necessary to solve a system of linear equations. The obtained solution was compared with an approximate analytical solution of a similar problem for a homogeneous disk and with the Neumann-Robin boundary conditions. A good agreement was obtained, the quality of which improved with an increase in the number of terms taken into account in the series.

Download file
Counter downloads: 56

Keywords

elliptic equation in a circle, piecewise constant coefficients, complete electrode model with integro-differential boundary condition, Fourier series

Authors

NameOrganizationE-mail
Starchenko Alexander V.Tomsk State Universitystarch@math.tsu.ru
Sednev Maxim A.Tomsk State Universitysednev99@mail.ru
Panko Sergey V.Tomsk State University
Всего: 3

References

Пеккер Я.С., Бразовский К.С., Усов В.Ю. и др. Электроимпедансная томография. Томск: НТЛ, 2004. 192 с.
Гуляев Ю.В., Корженевский А.В., Черепенин В.А. О возможности использования электроимпедансной компьютерной томографии для диагностики поражения легких вирусом COVID-19 // Журнал радиоэлектроники. 2020. № 5.
Pidcock M.K., Kuzuoglu M., Leblebicioglu K. Analytic and semi-analytic solutions in electrical impedance tomography. I. Two-dimensional problems // Physiol. Meas. 1995. V. 16(2). P. 77-90.
Boyle A., Adler A. Electrode models under shape deformation in electrical impedance tomography // Journal of Physics: Conference Series. 2010. V. 224. 012051.
Jehl M., Dedner A., Betcke T., Aristovich K., Klofkorn R., Holder D. A fast parallel solver for the forward problem in electrical impedance tomography // IEEE Trans Biomed Eng. 2015. V. 62(1). P. 126-137.
Шерина Е.С., Старченко А.В. Численное моделирование задачи электроимпедансной томографии и исследование подхода на основе метода конечных объемов // Бюллетень сибирской медицины. 2014. Т. 13. № 4. C. 156-164.
Isaacson D. Distinguishability of Conductivities by Electric Current Computed Tomography // IEEE Transactions on medical imaging. 1986. V. MI-5. No. 5. P. 91-95.
Demidenko E. An analytic solution to the homogeneous EIT problem on the 2D disk and its application to estimation of electrode contact impedances // Physiol Meas. 2011. V. 32(9). P. 1453-1471.
Borcea L. Electric Impedance Tomography. Topical Review // Inverse Problems. 2002. V. 18. P. R99-R136.
Somersalo E., Cheney M., Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography // SIAM J. Appl. Math. 2002. V. 52. P. 1023-40.
 An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 74. DOI: 10.17223/19988621/74/3

An approximate analytical solution to the forward inhomogeneous EIT problem on the 2D disk with allowance for the electrode contact impedance | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 74. DOI: 10.17223/19988621/74/3

Download full-text version
Counter downloads: 174