Unsteady Motions of Spherical Shells in a Viscoelastic Medium | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 83. DOI: 10.17223/19988621/83/14

Unsteady Motions of Spherical Shells in a Viscoelastic Medium

This paper considers the unsteady motions of the spherical bodies immersed in a viscoelastic medium under the action of unsteady waves. The relation between stresses and strains complies with the hereditary Boltzmann-Voltaire integral. Using the integral Laplace transform, an exact solution of the equations of motion is obtained in the images. The integrand function in the images satisfies Jordan's lemma. Using the residue theorem, displacements and stresses are determined as the functions of time. An algorithm is developed, and a program is compiled in C++. The numerical results are obtained and analyzed. It is revealed that the kinematic factors, i.e. acceleration and velocity, of the spherical shell differ significantly from those of the viscoelastic medium. Under shortterm exposure to waves (loads), the diagram of the stress-strain state changes: at all points of the shell, the maximum stresses and strains are significantly higher than average values, and the stress attains the maximum at the frontal point. Some differences are also found in the variation of time-displacement dependence for the spherical shell and surrounding viscoelastic medium.

Download file
Counter downloads: 5

Keywords

shell, viscoelastic medium, unsteady wave, Laplace transform, stress, strain

Authors

NameOrganizationE-mail
Safarov Ismoil I.Tashkent Institute of Chemical Technologysafarov54@mail.ru
Teshaev Mukhsin Kh.Institute of Mathematics of the Academy of Sciences of Uzbekistanmuhsin_5@mail.ru
Всего: 2

References

Вестяк А.В., Горшков А.Г., Тарлаковский Д.В. Нестационарное взаимодействие дефор мируемых тел с окружающей средой // Итоги науки и техники. Механика деформируемого твердого тела. М.: Наука,1985. Т. 9. С. 69-148.
Mow C.C., Pao Y.H. The Diffraction of Elastic waves and Dynamic Stress Concentrations. California, 1971. 682 р.
Перцев А.К., Платонов Э.Г. Динамика оболочек и пластин (нестационарные задачи). Л.: Судостроение, 1987. 316 с.
Филиппов И.Г., Егорычев О.А. Нестационарные колебания и дифракция волн в акусти ческих и упругих средах. М.: Машиностроение, 1977. 304 с.
White R.M. Surface elastic waves // Proceedings of the IEEE. 1970. V. 58 (8). P. 1238-1276.
Hasanov A., Kurbanov N., Mikhailova N. Investigation of Free Vibrations of Viscoelastic Bodies // Problems of Cybernetics and Informatics: IV International Conference. Baku, 2012 V. III. P. 1-29.
Kurbanov N.T., Nasibzada V.N. Investigation of forced oscillations viscoelastic shells // Inter national Journal of Current Research. 2015. V. 7, is. 07. Р. 18356-18360.
Сафаров И.И., Тешаев М.Х., Болтаев З.И. Волновое процессы в механическом волноводе. Основы, концепции, методы. Lambert Academic Publishing, 2012. 220 р.
Лычев С.А., Сеницкий Ю.Э. Несимметричные интегральные преобразования и их при ложения к задачам вязкоупругости // Вестник Самарского государственного университета. Естественно-научная серия. 2002. Спец. вып. С. 16-38.
Abramidze Ed., Abramidze El. Analysis of nonlinear deformation task of layered cylindrical shell by local surface force and temperature //j. Appl. Math. Inform. Mech. 2019. V. 24 (2). Р. 3-9.
Горшков А.Г., Тарлаковский Д.В. Нестационарная аэроупругость тел сферической формы. М.: Наука, 1990. 264 с.
Абдукадыров С.А. Нестационарное деформирование цилиндрической оболочки при действии плоской волны сдвига // Исследования по теории пластин и оболочек. 1992. Вып. 24. C. 118-124. URL: http://mi.mathnet.ru/rus/kutpo/v24/p118.
Safarov I.I., Boltaev Z.I., Axmedov M.Sh. Setting the Linear Oscillations of Structural Heterogeneity Viscoelastic Lamellar Systems with Point Relations //j. Applied Mathematics. 2015. V. 6. P. 228-234.
Safarov I.I., Boltaev Z.I., Axmedov M.Sh. Natural Oscillations of Cylindrical Bodies with External Friction on the Boundary //j. Applied Mathematics. 2015. V. 6. P. 629-645.
 Unsteady Motions of Spherical Shells in a Viscoelastic Medium | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 83. DOI: 10.17223/19988621/83/14

Unsteady Motions of Spherical Shells in a Viscoelastic Medium | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2023. № 83. DOI: 10.17223/19988621/83/14

Download full-text version
Counter downloads: 174