On primitivity of mixing digraphs associated with 2-feedbacks shift registers | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 37. DOI: 10.17223/20710410/37/3

Analysis of mixing properties of round transformations is an important issue in the theory of symmetric iterative block ciphers. For researching this subject, a matrix-digraph approach is widely used in cryptography. This approach allows to characterize the required properties in terms of primitivity and exponent of a matrix (or a digraph) related to the transformations concerned. This paper is devoted to such a characterization of mixing properties of transformations fulfilled by 2-feedback shift registers. For naturals n, m, and r, let n > 1, r > 1,0 ^ m ^ n - 2, Vr = (GF(2)]r; fm : Vrn ^ Vr and f,n-1 : Vrn ^ Vr are some feedback functions; ц : Vr ^ Vr and g : Vr ^ Vr are some permutations over Vr used to modify feedbacks fm and fn-1 respectively; x$0, x^ ,...,xsp are all essential variables of the function fm(x0, x1,..., xn-1), £0 = m + 1, 0 < < ... < 5p < n, p > 0; xdo, xdl,..., xdq are all essential variables of the function fn-1(x0, x1,..., xn-1), d0 = 0, d1 < ... < dq < n, q > 0; ^ : Vrn ^ Vrn, <£9^(x0, x1,..., xn-1) = = (x1,... ,xm-1,^(/m(x0,.. .,Жп-1 )),xm+1,..., xn-2, g(/n-1 (x0,... ,xn-1))). In fact, is the transition function of a shift register of the length n over Vr with two feedback functions ^(/m(x)) and g(/n-1(x)), x = x0x1... xn-1. Let M= M be a Boolean matrix (mij) (called the mixing matrix of the map ^>9,M), where mij = 1 iff the j-th coordinate function of the map essentially depends on the variable xi (i,j Е {0,1,...,n - 1}). The matrix M is said to be primitive if there is a power Me = (mj^ of its mixing matrix M such that mj > 0 for all i and j; in this case, the least power e is called an exponent of M and is denoted by exp M. The conceptions of the primitiveness and exponent of the matrix Mexpend to the digraph Г(^9,м) with the adjacency matrix M - the mixing graph associated with The main results of the paper are the following: 1) it is proved that the strongly connected digraph Г(^9,м) is primitive iff > m and the numbers in the set L' = {n - di, n + m + 1 - dj - : i = 0,..., q, j = 0,..., t, k = 1,..., p} are relatively prime or ^ m and the numbers in the set L = {n - di, n + m + 1 - dj - , m + 1 - ^ : i = 0,...,q, j = 0,... ,t,k = т + 1,... ,p, l = 1,..., т} are relatively prime, where t and т are determined by the conditions: dt and are the largest numbers in D = {d0,..., dq} and A = {£0,..., £p} with the properties dt ^ m and ^ m respectively; 2) for expr(^>9^), some attainable upper bounds depending on m and other parameters in D and A are obtained, improving all the known exponent estimates for the same digraphs. Particularly, if (n - 1) Е D and m Е A, then expr(^9,M) ^ min{p(D) + e, p(A) + e'}, where p(D) = max{n - dq,dq - dq-1, ..., d1 - d0}, p(A) = max{^1 + n - £p, £p - 5p-b..., fo - ^r,..., £2 - M, e = = max{2n - m - 2 - dq, n + m - max{£0, £p}}, and e' = max{2m + 1 - , n - 1 - dt}. These results can be successfully used in construction of iterative cryptographic algorithms based on with the rapid input data mixing.
Download file
Counter downloads: 238
  • Title On primitivity of mixing digraphs associated with 2-feedbacks shift registers
  • Headline On primitivity of mixing digraphs associated with 2-feedbacks shift registers
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 37
  • Date:
  • DOI 10.17223/20710410/37/3
Keywords
матрично-графовый подход, модифицированный аддитивный генератор, перемешивающий орграф, примитивность, регистр сдвига, экспонент, primitive digraph, exponent, mixing digraph, multi-feedback shift register, modified additive generator
Authors
References
Коренева А. М., Фомичёв В. М. Об одном обобщении блочных шифров Фейстеля // Прикладная дискретная математика. 2012. №3(17). С. 34-40.
Коренева (Дорохова) А. М., Фомичёв В. М. Уточнённые оценки экспонентов перемешивающих графов биективных регистров сдвига над множеством двоичных векторов // Прикладная дискретная математика. 2014. №1(23). С. 77-83. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000475667
Коренева (Дорохова) А. М. Оценки экспонентов перемешивающих графов некоторых модификаций аддитивных генераторов // Прикладная дискретная математика. Приложение. 2014. №7. С. 60-64. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000488179
Коренева А. М., Фомичёв В. М. Перемешивающие свойства модифицированных аддитивных генераторов // Дискрет. анализ и исслед. операций. 2017. Т. 24. №2. С. 32-52.
Фомичёв В. М. Новая универсальная оценка экспонентов графов // Прикладная дискретная математика. 2016. №3(33). С. 78-84. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000550710
Фомичёв В. М., Мельников Д. А. Криптографические методы защиты информации: учебник для академического бакалавриата. М.: ЮРАЙТ, 2016. 454с.
Фомичёв В. М. Оценки экспонентов примитивных графов // Прикладная дискретная математика. 2011. №2(12). С. 101-112.
 On primitivity of mixing digraphs associated with 2-feedbacks shift registers | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 37. DOI: 10.17223/20710410/37/3
On primitivity of mixing digraphs associated with 2-feedbacks shift registers | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 37. DOI: 10.17223/20710410/37/3
Download full-text version
Counter downloads: 621