Primitive sets of numbers being equivalent by Frobenius | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 1(23).

Equivalence of primitive sets of natural numbers is investigated in connection with the Diophantine Frobenius problem. The equivalence is used for simplifying calculations of Frobenius number g(a 1,..., a k) and of the whole set of numbers that are not contained in the additive semigroup generated by a set {a 1,..., a k}.
Download file
Counter downloads: 81
  • Title Primitive sets of numbers being equivalent by Frobenius
  • Headline Primitive sets of numbers being equivalent by Frobenius
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 1(23)
  • Date:
  • DOI
Keywords
additive semigroup generated by set of numbers, Frobenius number, primitive set, порожденная множеством чисел аддитивная полугруппа, примитивное множество, число Фробениуса
Authors
References
Bocker S. and Liptak Z. The "money changing problem" revisited: computing the Frobenius number in time O(ka1). Technical Report No.2004-2, Univ. of Bielefeld, Technical Faculty, 2004.
Nijenhuis M. A minimal-path algorithm for the "money changing problem" // Am. Math. Monthly. 1979. V. 86. P. 832-835.
Bogart C. Calculating Frobenius numbers with Boolean Toeplitz matrix multiplication // For Dr. Cull, CS 523, March 17, 2009. Oregon State University.
Heap B. R. and Lynn M. S. On a linear Diophantine problem of Frobenius: an improved algorithm // Numerische Math. 1965. No 7. P. 226-231.
Alfonsin J. R. The Diophantine Frobenius Problem. Oxford University Press, 2005.
Heap B. R. and Lynn M. S. A graph-theoretic algorithm for the solution of a linear Diophantine problem of Frobenius // Numerische Math. 1964. No. 6. P. 346-354.
Фомичев В. М. Эквивалентность примитивных множеств // Прикладная дискретная математика. Приложение. 2013. №6. С. 20-24.
Sylvester J. J. Problem 7382 // Mathematical Questions from the Educational Times. 1884. V. 37. P. 26.
Curtis F. On formulas for the Frobenius number of a numerical semigroup // Math. Scand. 1990. No. 67. P. 190-192.
 Primitive sets of numbers being equivalent by Frobenius | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 1(23).
Primitive sets of numbers being equivalent by Frobenius | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 1(23).