A method is proposed for computing the nonlinearity degree of a discrete functions defined on a cyclic group of order p n. The method is based on Newton expansion for a discrete function. Theorem 1 presents the values of nonlinearity degree for all basic functions in Newton expansion. Theorems 2 and 3 illustrate number distributions for functions on cyclic groups of order p 2 and p 3 according to their nonlinearity degrees.
Download file
Counter downloads: 86
- Title Computation of nonlinearity degree for discrete functions on primary cyclic groups
- Headline Computation of nonlinearity degree for discrete functions on primary cyclic groups
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 2(24)
- Date:
- DOI
Keywords
Newton expansion, nonlinearity degree, discrete functions, разложение Ньютона, степень нелинейности, дискретные функцииAuthors
References
Granville A. Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers // Organic Math. (Burnaby, BC, 1995), CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997. P. 253-276.
Черемушкин А. В. Аддитивный подход к определению степени нелинейности дискретной функции на циклической группе примарного порядка // Прикладная дискретная математика. 2013. №2(20). С. 26-38.

Computation of nonlinearity degree for discrete functions on primary cyclic groups | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 2(24).
Download full-text version
Counter downloads: 202