Characterization of apn functions by means of subfunctions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).

A vectorial Boolean function F : {0,1} ^ {0,1} is called an APN function if the equation F(x)®F(i®a) = b has at most 2 solutions for any vectors a, b, where a = 0. The complete characterization of APN functions by means of subfunctions is found. It is proved that F is APN function if and only if each of its subfunctions in n - 1 variables is an APN function or has the order of differential uniformity 4 and the admissibility conditions are hold. Some numerical results of this characterization for small number n of variables are presented.
Download file
Counter downloads: 242
  • Title Characterization of apn functions by means of subfunctions
  • Headline Characterization of apn functions by means of subfunctions
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 7 (Приложение)
  • Date:
  • DOI
Keywords
APN function, differentially 5-uniform function, vectorial Boolean function, APN-функция, дифференциально 8-равномерная функция, векторная булева функция
Authors
References
Фролова А. А. Итеративная конструкция APN-функций // Прикладная дискретная математика. Приложение. 2013. №6. С. 24-25.
Nyberg K. Differentially uniform mappings for cryptography // Eurocrypt 1993. LNCS. 1994. V. 765. P. 55-64.
Тужилин М. Э. Почти совершенные нелинейные функции // Прикладная дискретная математика. 2009. №3. С. 14-20.
 Characterization of apn functions by means of subfunctions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
Characterization of apn functions by means of subfunctions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
Download full-text version
Counter downloads: 1920