For the class of differentiable modulo p
functions, subsets , C
n are defined so that every function f in is uniquely represented by the sum of certain functions f
A G A
n, f
B G , f
C G C
n. The numbers of functions, of bijective functions and of transitive functions in are found via this representation. According to these cardinality relations, the set of transitive differentiable modulo p
functions coincide with the set of transitive polynomial functions, but this ceases to be true with increasing the degree of the modulo. It is shown that a function f in is invertible if and only if f is invertible modulo p and the derivatives of f are not equal 0 modulo p
, i = 2, . . . , n. A recurrent formula is presented for finding inverse differentiable modulo p
function for a bijective function in . A transitivity condition is obtained for a differentiable modulo p
function. It is shown that any transitive function f in may be constructed from a function f in D
n-1 such that f = f (mod p
).
Download file
Counter downloads: 183
- Title Research of differentiable modulo p functions
- Headline Research of differentiable modulo p functions
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 7 (Приложение)
- Date:
- DOI
Keywords
transitive function, bijective function, inverse function, differentiable modulo function, recurrent sequence, транзитивная функция, биективная функция, обратная функция, диффереренцируемая функция, рекуррентная последовательностьAuthors
References
Ларин М. В. Транзитивные полиномиальные преобразования колец вычетов // Дискретная математика. 2002. №14:2. С. 20-32.
Анашин В. С. Равномерно распределенные последовательности целых p-адических чисел // Дискретная математика. 2002. №14:4. С. 3-64.

Research of differentiable modulo p
functions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
Download full-text version
Counter downloads: 1917