Let F be a function F : G
^ G on a cyclic group G of order p
, and A
aF(x) = F(x + а) - F(x), x G G G
. The nonlinearity degree dl F is the minimal number t such that A
tt1 ... A
at+1 F(x) = = 0 for all а
1,..., а
4+1, x G G
. A method is proposed for computing dl F on the basis of the Newton expansion for F. Theorem 1 presents the value of nonlinearity degree for all basic functions Fj(x) = ^ mod p
, 1 < i < p
- 1, namely: dl Fj = i+(t-1)(p-1)p
+p
-p*, if p* < i < p
- 1,1 < t < n - 1, and dl Fj = i otherwise. As a consequence, the number of functions with small (0 < dl F < p - 1) or almost maximal (max -p +1 < dl F < max) nonlinearity degree is obtained. Theorems 2 and 3 give the number of functions with any prescribed nonlinearity degree for cyclic groups of order p
and p
. Keywords: discrete functions, nonlinearity degree. Shishkin V. A. SOME PROPERTIES OF q-ARY BENT FUNCTIONS. Let F be a function from a finite field Q to a finite field P. Here, both fields are of characteristic 2, |P| = q ^ 2 and Q is the expansion of the field P. The period of F is defined as the period of the sequence u(i) = F(0
) (0 - primitive element of Q, i G No). Besides, let N
a(F) be a number of solutions in Q of equation F(x) = а, а G P. Consider F to be a bent function. In this case, it is shown that if the period of F is not maximal one, then exact values of N
a(F), а G P, can be derived. Moreover, if values of N
a(F), а G P, are of a special form, then the value of the period of F is divisible by some exact value.
Download file
Counter downloads: 130
- Title Number of discrete functions on a primary cyclic group with a given nonlinearity degree
- Headline Number of discrete functions on a primary cyclic group with a given nonlinearity degree
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 7 (Приложение)
- Date:
- DOI
Keywords
equations over finite fields, period of a function, bent functions, степень нелинейности, дискретные функцииAuthors
References
Черемушкин А. В. Вычисление степени нелинейности функции на циклической группе примарного порядка // Прикладная дискретная математика. 2014. №2(24). С. 37-47.
Черемушкин А. В. Аддитивный подход к определению степени нелинейности дискретной функции на циклической группе примарного порядка // Прикладная дискретная математика. 2013. №2(20). С. 26-38.

Number of discrete functions on a primary cyclic group with a given nonlinearity degree | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
Download full-text version
Counter downloads: 1916