The metric properties of the class of vectorial Boolean functions are studied. A vectorial Boolean function F in n variables is called a differential 8-uniform function if the equation F(x) ф F(x ф а) = b has at most 8 solutions for any vectors а, b, where а = 0. In particular, if it is true for 8 = 2, then the function f is called APN. The distance between vectorial Boolean functions F and G is the cardinality of the set {x £ Zn : F(x) = G(x)}. It is proved that there are only differential 4-uniform functions which are on the distance 1 from an APN function.
Download file
Counter downloads: 156
- Title Vectorial boolean functions on distance one from apn functions
- Headline Vectorial boolean functions on distance one from apn functions
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 7 (Приложение)
- Date:
- DOI
Keywords
APN function, differentially 8-uniform function, vectorial Boolean function, APN-функция, дифференциально 8-равномерная функция, векторная булева функцияAuthors
References
Nyberg K. Differentially uniform mappings for cryptography // LNCS. 1994. V. 765. P. 55-64.
Коломеец Н. А. Перечисление бент-функций на минимальном расстоянии от квадратичной бент-функции // Дискретн. анализ и исслед. операций. 2012. Т. 19. №1. С. 41-58.
Коломеец Н. А., Павлов А. В. Свойства бент-функций, находящихся на минимальном расстоянии друг от друга // Прикладная дискретная математика. 2009. №4. С. 5-20.

Vectorial boolean functions on distance one from apn functions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
Download full-text version
Counter downloads: 1917