Every cubic Boolean function in 8 variables is the sum of not more than 4 bent functions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).

It is shown that any cubic Boolean function in 8 variables is the sum of not more than 4 bent functions in 8 variables.
Download file
Counter downloads: 179
  • Title Every cubic Boolean function in 8 variables is the sum of not more than 4 bent functions
  • Headline Every cubic Boolean function in 8 variables is the sum of not more than 4 bent functions
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 7 (Приложение)
  • Date:
  • DOI
Keywords
affine classification, bent function, cubic Boolean function
Authors
References
3. Logachev O.A., Sal'nikov A. A., Smyshlyaev S. V., and Yashenko V. V. Boolean functions in coding theory and cryptology. Moscow center for the uninter. math. education, 2012. 584 p. (in Russian)
1. Tokareva N. N. On the number of bent functions from iterative constructions: lower bounds and hypotheses // Advances Math. Comm. (AMC). 2011. V.5. Iss.4. P. 609-621.
2. Qu L. and Li C. When a Boolean function can be expressed as the sum of two bent functions // Cryptology ePrint Archive. 2014/048.
 Every cubic Boolean function in 8 variables is the sum of not more than 4 bent functions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
Every cubic Boolean function in 8 variables is the sum of not more than 4 bent functions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
Download full-text version
Counter downloads: 1917