About primitiveness of self-decimated generator's mixing matrices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).

Primitiveness conditions are obtained for mixing matrix of a (8, т)-self-decimated generator and its generalization constructed on the basis of non-linear substitutions of a vector space over a finite field. Some upper estimates for exponents of mixing matrices are given.
Download file
Counter downloads: 221
  • Title About primitiveness of self-decimated generator's mixing matrices
  • Headline About primitiveness of self-decimated generator's mixing matrices
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 7 (Приложение)
  • Date:
  • DOI
Keywords
exponent of matrix, primitive matrix, primitive graph, self-decimated generator, экспонент матрицы, примитивная матрица, примитивный граф, т)-самоусечения, генератор (5
Authors
References
Сачков В. Н., Тараканов В. Е. Комбинаторика неотрицательных матриц. М.: ТВП, 2000. 448 c.
Alfonsin J. R. The Diophantine Frobenius Problem. Oxford University Press, 2005. УДК 519.113.6
Фомичев В. М. Методы дискретной математики в криптологии. М.: Диалог-МИФИ, 2010. 424 c.
Фомичев В. М. Оценки экспонентов примитивных графов // Прикладная дискретная математика. 2011. №2(12). С. 101-112.
Rueppel R. A. When shift registers clock themselves // Advances in Cryptology - Eurocrypt'87. LNCS. 1988. V.304. P. 53-64.
 About primitiveness of self-decimated generator's mixing matrices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
About primitiveness of self-decimated generator's mixing matrices | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
Download full-text version
Counter downloads: 1917