There are no polynomials with full cycle over the Galois ring. The maximal length of cycle of polynomial mapping over the Galois ring equals q(q - 1)p
, where q
- cardinality of ring and p
- its characteristic. In this work, an algorithm is presented for constructing the system of representatives of all maximal length cycles of a polynomial substitution over the Galois ring. Let an elementary operation be the production in the Galois ring, then the complexity of the algorithm equals O(1q
) elementary operations as n tends to infinity, where I is the degree of the polynomial.
Download file
Counter downloads: 194
- Title Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the galois ring
- Headline Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the galois ring
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 7 (Приложение)
- Date:
- DOI
Keywords
Galois ring, nonlinear recurrent sequences, нелинейные рекуррентные последовательности, кольца ГалуаAuthors
References
Ермилов Д. М. О цикловой структуре полиномиальных преобразований колец Галуа максимального периода // Обозрение прикл. и промышл. матем. 2013. Т. 20. Вып. 3.
Ермилов Д. М., Козлитин О. А. Цикловая структура полиномиального генератора над кольцом Галуа // Математические вопросы криптографии. 2013. Т. 4. Вып. 1. С. 27-57.

Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the galois ring | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 7 (Приложение).
Download full-text version
Counter downloads: 1917