Boolean functions in n variables are represented by polynomials over GF(2 n). The relationship between the coefficients of polynomials and the weights of functions are researched. Some formulas for expressing the dependence of the first and the second bits in the binary code of the function weight on the polynomial coefficients are obtained. For weights of bent functions and for their subfunc-tions, some expressions are also obtained.
Download file
Counter downloads: 69
- Title Relationship between the coefficients of polynomials over GF(2 n) and weights of Boolean functions represented by them
- Headline Relationship between the coefficients of polynomials over GF(2 n) and weights of Boolean functions represented by them
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 4(26)
- Date:
- DOI
Keywords
subspaces, weight of function, vector space, polynomial over a field, Boolean function, bent function, многообразия, подпространство, вес функции, многочлен над полем, бент-функция, булева функцияAuthors
References
Логачев О. А., Сальников А. А., ЯщенкоВ. В. Булевы функции в теории кодирования и криптологии. М.: МЦНМО, 2004.
Кузьмин А. С., Марков В. Т., Нечаев А. А., Шишков А. Б. Приближение булевых функций мономиальными // Дискретная математика. 2006. Т. 18. №1. С. 9-29.
Rueppel R. A. Analysis and Design of Stream Ciphers. Berlin: Springer, 1986. 244 p.
Мак-Вильямс Ф.Дж., Слоэн Н.Дж. А. Теория кодов, исправляющих ошибки. М.: Связь, 1979.
Rothaus O.S. On bent functions // J. Combinatorial Theory. 1976. V. 20(A). P. 300-305.
YoussefA. and Gong G. Hyper-bent functions // LNCS. 2001. V.2045. P. 406-419.
Логачев О. А., Сальников А. А., ЯщенкоВ. В. О свойствах сумм Вейля на конечных полях и конечных абелевых группах // Дискретная математика. 1999. Т. 11. №2. С. 66-85.
Relationship between the coefficients of polynomials over GF(2 n) and weights of Boolean functions represented by them | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2014. № 4(26).
Download full-text version
Counter downloads: 205