On distribution of number of ones in binary multicycle sequence | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 1 (27).

The work is devoted to studying the stability of probability-theoretical model which describes Pohl generator. For the purpose, we investigate the distribution of random variable equalled to the number of ones in the outcome sequence of a multicycle generator over the field GF(2) in the case when binary random variables filling the registers are independent and the probabilities of one's occurrences in registers differ from 1/2 and can change with growing the registers lengths. The exact expressions for expectation and variance of the random variable are given. For the case when the number of registers is finite, we derive the conditions under which the distribution of normalized number of ones converges to the distribution of the product of independent random variables each of which is distributed by standard normal law. We prove the central limit theorem for normalized number of ones when the number of registers tends to infinity. It is shown that breaking the property of equiprobable distribution for binary characters in registers results in significant differences of properties of the limit distributions compared to equiprobable case.
Download file
Counter downloads: 60
  • Title On distribution of number of ones in binary multicycle sequence
  • Headline On distribution of number of ones in binary multicycle sequence
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 1 (27)
  • Date:
  • DOI
Keywords
central limit theorem, Pohl generator, multicycle sequence, центральная предельная теорема, генератор Пола, мультициклическая последовательность
Authors
References
Севастьянов Б. А. Курс теории вероятностей и математической статистики. М.: Наука, 1982. 256 с.
Deng L.-Y. and Xu H. A system of high-dimensional, efficient, long-cycle and portable uniform random number generators // ACM Trans. Modeling Comp. Simul. 2003. V. 13(4). P. 299-309.
Ширяев А. Н. Вероятность. М.: Наука, 1989. 581с.
Douglas W. M. A nonlinear random number generator with known, long cycle length // Cryptologia. 1993. V. 17(1). P. 55-62.
Mezhennaya N. M. Convergence rate estimators for the number of ones in outcome sequence of MCV generator with m-dependent registers items // Siber. Electr. Math. Rep. 2014. V. 11. P. 18-25.
Меженная Н. М. Предельные теоремы для числа плотных серий с заданными параметрами в выходной последовательности генератора Пола // Инженерный журнал: наука и инновации. 2013. №4(16). С. 1-8.
Pohl P. Description of MCV, a pseudo-random number generator // Scand. Actuarial J. 1976. No. 1. P. 1-14.
Меженная Н. М., Михайлов В. Г. О распределении числа единиц в выходной последовательности генератора Пола над полем GF(2) // Математические вопросы криптографии. 2013. Т. 4. №4. С. 95-107.
Pohl P. The multicyclic vector method of generating pseudo-random numbers. I. Theoretical background, description of the method and algebraic analysis. Report TRITA-NA-7307. Stockholm, Sweden: Royal Inst. of Technology, 1973. 36 p.
 On distribution of number of ones in binary multicycle sequence | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 1 (27).
On distribution of number of ones in binary multicycle sequence | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 1 (27).
Download full-text version
Counter downloads: 252