The shift of scientific interest from physical phenomena obeying laws of thermodynamics towards nonlinear dissipative processes containing chemical and biological transformations stimulates a similar turn in mathematical modeling: from differential equation solution to direct and stochastic simulation. A foundation for discrete simulation is the asynchronous cellular automaton - a stochastic analogue of von-Neumann's cellular automaton. For the time being, there is no systematic methodology for constructing asynchronous cellular automata simulating processes composed of many actions transforming a common discrete space. It is not known, how different are simulation results obtained by different ways of composing simple operations for organizing a complex computational process. In the paper, an attempt is made to answer this question by means of performing a series of simulation of three typical reaction-diffusion processes with different asynchronous modes of functioning, and comparative analysis of their evolutions and invariants. The obtained result shows that qualitative character of the process under simulation does not depend on the composition mode, and quantitative differences may be corrected.
Download file
Counter downloads: 66
- Title Functioning modes of asynchronous cellular automata simulating nonlinear spatial dynamics
- Headline Functioning modes of asynchronous cellular automata simulating nonlinear spatial dynamics
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 1 (27)
- Date:
- DOI
Keywords
spacial self organization, reaction-diffusion processes, modes of functioning, asynchronous cellular automaton, discrete mathematical modeling, пространственная самоорганизация, режимы функционирования, реакционно-диффузионные процессы, асинхронный клеточный автомат, дискретное математическое моделированиеAuthors
References
Chen Q., Mao J., and Li W. Stability analysis of harvesting strategies in a cellular automata based predator - prey model // Cellular Automata. LNCS. 2006. V.4173. P. 268-376.
Kutson J. D. A survey of the use of cellular automata and cellular automata like models for simulating a population of biological cells. Iowa State University, 2011. Graduate Thesis and Dissertations. Paper 10133. http://lib.dr.iastate.edu/efd
Nicolis G. and Prigogine I. Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations. N.Y.: Wiley, 1977.
Свирежев Ю. М. Нелинейные волны, диссипативные структуры и катастрофы в экологии. М.: Наука, 1987. 368 с.
Bogoyavlenskiy V. A. and Chernova N. A. Diffusion-limited aggregation: a relationship between surface thermodynamics and crystal morphology // Phys. Rev. E. 2000. No. 61(2). P. 1629-1633.
Batty M. and Longley P. Urban growth and form: scaling, fractal geometry, and diffusion-limited aggregation // Environment and Planning. 1989. V. 21(11). P. 1447-1472.
Ackland G. J. and Tweedie E. S. Microscopic model of diffusion limited aggregation and electrodeposition in the presence of leveling molecules // Phys. Rev. E73, 011606. 26 January 2006.
Witten T. A., Jr. and Sander L. M. Diffusion-limited aggregation, a kinetic critical phenomenon // Phys. Rev. Lett. 1981. V. 47. No. 19. P. 1400-1403.
Fisher R. A. The genetical theory of natural selection. Oxford: Univ. Press, 1930. 58 p.
Szakaly T., Lagzi I., Izsak F., et al. Stochastic cellular automata modelling excitable systems // Central Eur. J. Phys. 2007. No. 5(4). P. 471-486.
Колмогоров А. Н., Петровский И. Г., Пискунов И. С. Исследование уравнения диффузии, соединенной с возрастанием количества вещества, и его применение к одной биологической проблеме // Бюллетень МГУ. Секция А. 1937. Вып. 6. С. 1-25.
Van Saarloos W. Front propagation into unstable states // Phys. Rep. 2003. V. 386. P. 29-222.
Achasova S., Bandman O., Markova V., and Piskunov S. Parallel Substitution Algorithm. Theory and Application. Singapore: World Scientific, 1994. 180 p.
Бандман О. Л. Дискретное моделирование физико-химических процессов // Прикладная дискретная математика. 2009. №3. C. 33-49.
Kireeva A. Parallel implementation of totalistic cellular automata model of stable patterns formation // 12th Int. Conf. "Parallel Computing Technologies", St.-Petersbourg, 2013. LNCS. 2013. V. 7979. P. 347-360.
Бандман O. Л. Методы композиции клеточных автоматов для моделирования пространственной динамики // Вестник Томского государственного университета. 2004. Приложение №9(1). С. 183-193.
Nurminen L., Kuonen A., and Kaski K. Kinetic Monte-Carlo simulation on patterned substrates // Phys. Rev. B63, 035407. 29 December 2000.
Matveev A. V., Latkin E. I., Elokhin V. I, and Gorodetskii V. V. Turbulent and stripes wave patterns caused by limited C0ads diffusion during CO oxidation over Pd(110) surface: kinetic Monte Carlo studies // Chem. Eng. J. 2005. V. 107. P. 181-189.
Chatterjee A. and Vlaches D. G. An overview of spatial microscopic and accelerated kinetic Monte-Carlo methods // J. Computer-Aided Mater. Des. 2007. V. 14. P. 253-308.
Metropolis N. and Ulam S. The Monte Carlo method // Amer. Statist. Assoc. 1949. V. 44. No. 247. P. 335-341.
Фон Нейман Дж. Теория самовоспроизводящихся автоматов. М.: Мир, 1971. 384 c.

Functioning modes of asynchronous cellular automata simulating nonlinear spatial dynamics | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 1 (27).
Download full-text version
Counter downloads: 254