Generation of porous media computer representation by two-layer totalistic cellular automaton | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 1 (27).

In the paper, two-layer totalistic cellular automaton allowing to generate porous materials computer representation is presented. Two-layer cellular automaton is constructed as a parallel composition of a totalistic cellular automaton and an asynchronous cellular automaton. The second layer gives an opportunity to form complex inhomogeneous structures similar to a patterns emerging in natural phenomena. The investigation aims to create a method for porous media morphology synthesis according to a given set of properties such as porosity, percolation, density, etc. Two-layer totalistic cellular automaton allows to obtain a set of patterns representing different porous media morphology. In addition, a porous medium characteristics such as percolation degree, porosity, the number of connected components are calculated and can be used for the analysis and selection of materials with necessary morphology.
Download file
Counter downloads: 110
  • Title Generation of porous media computer representation by two-layer totalistic cellular automaton
  • Headline Generation of porous media computer representation by two-layer totalistic cellular automaton
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 1 (27)
  • Date:
  • DOI
Keywords
тоталистический клеточный автомат, параллельная композиция клеточных автоматов, активатор, ингибитор, устойчивые структуры, пористые среды, totalistic cellular automaton, parallel composition of cellular automata, activator, inhibitor, porous media, stable patterns
Authors
References
Chopard B. and Droz M. Cellular Automata Modeling of Physical Systems. Cambridge University Press, 1998. 337 p.
Bandman O. L. Cellular Automata composition techniques for spatial dynamics simulation // Bulletin of the Novosibirsk Computing Center. Ser. Comp. Sci. 2008. V. 27. P. 1-39.
Бандман О. Л. Клеточно-автоматные модели пространственной динамики // Системная информатика. Методы и модели современного программирования. 2006. №10. С. 59-113.
Young D. A. A local activator-inhibitor model of vertebrate skin patterns // Math. Biosciences. 1984. V. 72. P. 51-58.
Turing A. M. The chemical basis of morphogenesis // Philosophical Transactions of the Royal Society of London. Ser. B. Biol. Sci. 1952. V.237. No. 641. P. 37-72.
Gierer A. and Meinhardt H. A theory of biological pattern formation // Kybernetik. 1972. V. 12. No. 1. P. 30-39.
Gierer A. Generation of biological patterns and form: Some physical, mathematical and logical aspects // Progress in Biophysics and Molecular Biology. 1981. V. 37. P. 1-47.
Бандман О. Л. Метод построения клеточно-автоматных моделей процессов формирования устойчивых структур // Прикладная дискретная математика. 2010. №4. C. 91-99.
Chua L. O., Hasler M., Moschytz G. S., and Neirynck J. Autonomous cellular neural networks: A unified paradigm for pattern formation and active wave propagation // IEEE Trans. Circuits and Systems. 1995. V.42. P. 559-577.
Bandman O. L. Using Cellular Automata for porous media simulation // J. Supercomputing. 2011. V. 57. No. 2. P. 121-131.
 Generation of porous media computer representation by two-layer totalistic cellular automaton | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 1 (27).
Generation of porous media computer representation by two-layer totalistic cellular automaton | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 1 (27).
Download full-text version
Counter downloads: 254