On generic complexity of the quadratic residuosity problem | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 2 (28).

Generic-case approach to algorithmic problems was suggested by Myasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. For example, this is the classical discrete logarithm problem. In this talk we consider generic complexity of the quadratic residuosity problem. We fit this problem in the frameworks of generic complexity and prove that its natural subproblem is generically hard provided that the quadratic residuosity problem is hard in the worst case.
Download file
Counter downloads: 419
  • Title On generic complexity of the quadratic residuosity problem
  • Headline On generic complexity of the quadratic residuosity problem
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 2 (28)
  • Date:
  • DOI
Keywords
генерическая сложность, квадратичный вычет, вероятностный алгоритм, generic complexity, quadratic residue, probabilistic algorithm
Authors
References
Kapovich I., Miasnikov A, Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694.
Kapovich I., Miasnikov A., Schupp P., and Shpilrain V. Average-case complexity for the word and membership problems in group theory // Adv. Math. 2005. V. 190. P. 343-359.
Hamkins J. D. and Miasnikov A. G. The halting problem is decidable on a set of asymptotic probability one // Notre Dame J. Formal Logic. 2006. V. 47. No. 4. P. 515-524.
Gilman R., Miasnikov A. G., Myasnikov A. D., and Ushakov A. Report on generic case complexity // Herald of Omsk University. 2007. Special Issue. P. 103-110.
Blum M. and Micali S. How to generate cryptographically strong sequences of pseudorandom bits // SIAM J. Comput. 1984. V. 13. No. 4. P. 850-864.
Мао В. Современная криптография: теория и практика. М.: Вильямс, 2005. 768с.
Impagliazzo R. and Wigderson A. P=BPP unless E has subexponential circuits: derandomizing the XOR Lemma // Proc. 29th STOC. El Paso: ACM, 1997. P. 220-229.
Myasnikov A. and Rybalov A. Generic complexity of undecidable problems // J. Symbolic Logic. 2008. V. 73. No. 2. P. 656-673.
Rybalov A. Generic complexity of Presburger Arithmetic // Theory Comput. Systems. 2010. V. 46. No. 1. P. 2-8.
 On generic complexity of the quadratic residuosity problem | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 2 (28).
On generic complexity of the quadratic residuosity problem | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 2 (28).
Download full-text version
Counter downloads: 1302