Properties of minimal primitive digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 2 (28).

It is proved that, for n ^ 4, the complexity of the determination of all n-vertex minimal primitive digraphs, which are parts of a given n-vertex primitive digraph Г, coincides with the complexity of the recognition of a monotone Boolean function in s variables where s is the number of arcs (i, j) in Г such that the vertex i out-degree and the vertex j in-degree exceed 1. It is found that, for n ^ 4, all the primitive n-vertex digraphs with n + 1 arcs are minimal graphs and there are minimal primitive n-vertex digraphs with the number of arcs from n + 2 to 2n - 3. Minimal primitive n-vertex digraphs with n + 1 and n + 2 arcs are described.
Download file
Counter downloads: 375
  • Title Properties of minimal primitive digraphs
  • Headline Properties of minimal primitive digraphs
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 2 (28)
  • Date:
  • DOI
Keywords
примитивная матрица, примитивный орграф, сильносвязный орграф, primitive matrix, primitive digraph, strongly connected digraph
Authors
References
Бар-Гнар Р. И., Фомичев В. М. О минимальных примитивных матрицах // Прикладная дискретная математика. Приложение. 2014. №7. С. 7-9.
Варфоломеев А. А., Фомичев В. М. Информационная безопасность. Математические основы криптологии. Ч. I. М.: МИФИ, 1995. 114 с.
Фомичев В. М. Оценки экспонентов примитивных графов // Прикладная дискретная математика. 2011. №2(12). С. 101-112.
Харари Ф. Теория графов. М.: Едиториал УРСС, 2003. 296 с.
 Properties of minimal primitive digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 2 (28).
Properties of minimal primitive digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 2 (28).
Download full-text version
Counter downloads: 1302