On the complexity of discrete logarithm problem in an interval in a finite cyclic group with efficient inversion | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 2 (28).

Discrete logarithm problem in an interval in a finite group G = (P) consists in solving the equation Q = nP with respect to n Е {-N/2,..., N/2} for the specified P, Q Е G and 0
Download file
Counter downloads: 347
  • Title On the complexity of discrete logarithm problem in an interval in a finite cyclic group with efficient inversion
  • Headline On the complexity of discrete logarithm problem in an interval in a finite cyclic group with efficient inversion
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 2 (28)
  • Date:
  • DOI
Keywords
задача дискретного логарифмирования в интервале, алгоритм Годри , Шоста, discrete logarithm problem in interval, Gaudry , Schost algorithm
Authors
References
Gaudry P. and Schost E. A low-memory parallel version of Matsuo, Chao and Tsujii's algorithm // LNCS. 2004. V.3076. P. 208-222.
Galbraith S. D. and Holmes M. A non-uniform birthday problem with applications to discrete logarithms // Discr. Appl. Math. 2012. V. 160. No. 10-11. P. 1547-1560. eprint.iacr.org/ 2010/616
Gallant R., Lambert R, and Vanstone S. Faster point multiplication on elliptic curves with efficient endomorphisms // CRYPT0'2001. LNCS. 2001. V.2139. P. 190-200.
Wiener M.J. and Zuccherato R. J. Faster attacks on elliptic curve cryptosystems // LNCS. 1999. V. 1556. P. 190-200.
Galbraith S. D. and Ruprai R. S. Using equivalence classes to accelerate solving the Discrete Logarithm Problem in a short interval // LNCS. 2010. V. 6056. P. 368-383. eprint.iacr. org/ 2010/615
Liu W. Improved algorithms for the 2-dimensional discrete logarithm problem with equivalence classes. MSc Thesis, University of Auckland, 2010. http://www.math.auckland.ac.nz/ ~sgal018/Wei-Liu-MSc.pdf
Николаев М. В., Матюхин Д. В. О сложности двумерной задачи дискретного логарифмирования в конечной циклической группе с эффективным автоморфизмом порядка 6 // Дискретная математика. 2013. Т. 25. №4. С. 54-65.
 On the complexity of discrete logarithm problem in an interval in a finite cyclic group with efficient inversion | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 2 (28).
On the complexity of discrete logarithm problem in an interval in a finite cyclic group with efficient inversion | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 2 (28).
Download full-text version
Counter downloads: 1302