We present a semantically secure public-key cryptosystem based on the RSA cryp-tosystem. We describe possible preferences of the proposed cryptosystem with respect to the basic RSA cryptosystem. These preferences include a semantic security property, as well as more various choice of an encryption key, and the possibility to select this key by an ordinary user. It is shown that the knowledge of the modulus factorization does not allow to break the cryptosystem as it happens in the basic RSA.
Download file
Counter downloads: 275
- Title A semantically secure public-key cryptosystem based on RSA
- Headline A semantically secure public-key cryptosystem based on RSA
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 3(29)
- Date:
- DOI
Keywords
семантическая стойкость, система шифрования с открытым ключом, RSA, платформа шифрования, ключи шифрования и расшифрования, мультипликативная группа кольца вычетов, подгруппа квадратичных вычетов, semantic security, public-key cryptosystem, RSA cryptosystem, encryption platform, encryption and decryption keys, the multiplicative group of a residue ring, the subgroup of quadratic residuesAuthors
References
Rivest R., Shamir A., and Adleman L. A method for obtaining digital signatures and public-key cryptosystems // Comm. ACM. 1978. V.21(2). P. 120-126.
Hinek M. J. Cryptanalysis of RSA and its Variants. Boca Raton: Chapman & Hall/CRC, 2010.
Song Y. Y. Cryptanalytic Attacks on RSA. Springer, 2008.
Stamp M. and Low R. M. Applied Cryptanalysis. Breaking Ciphers in the Real World. Hoboken: John Wiley & Sons, 2007.
Романьков В. А. Введение в криптографию. М.: Форум, 2012. 239с.
Koblitz N. A Course in Number Theory and Cryptography. N.Y.: Springer, 1994. 235 p.
Maurer U. M. Fast generation of prime numbers and secure public-key cryptographic parameters // Cryptology. 1995. V. 8. P. 123-155.
Rabin M. O. Digitalized Signatures and Public Key Functions as Intractable as Factorization. Technical Report. Cambridge: MIT, 1979.
A semantically secure public-key cryptosystem based on RSA | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 3(29).
Download full-text version
Counter downloads: 1013