A method for constructing a 3D mesh for computer simulating the dynamics of a bacterial cells surface by cellular automata is presented. The idea of the proposed method is based on the dividing the cell surface into layers having the form of rings of nodes. This enables to change separate parts of the mesh structure without rebuilding the entire surface. Moreover, a fast algorithm for determining the neighbourhood of nodes on the spheroidal parts of the cell surface has been developed. The proposed algorithms have been implemented as a software package. A series of computational experiments showed the effectiveness of the proposed method for simulation of the interactions between the complex processes inside bacterial cells, leading to dynamical change of their surface.
Download file
Counter downloads: 291
- Title Construction of inhomogeneous 3D mesh for simulation of bacterial cell growth and division by cellular automata
- Headline Construction of inhomogeneous 3D mesh for simulation of bacterial cell growth and division by cellular automata
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 3(29)
- Date:
- DOI
Keywords
клеточные автоматы, самоорганизация, динамика поверхности, компьютерное моделирование, рост и деление клеток, E.coli, cellular automata, self-organization, surface dynamics, computer simulation, cell growth and division, E.coliAuthors
References
Lutkenhaus J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring // Annu. Rev. Biochem. 2007. No. 76. P. 539-562.
Ivanov V. and Mizuuchi K. Multiple modes of interconverting dynamic pattern formation by bacterial cell division proteins // Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 8071-8078.
Hu Z. and Lutkenhaus J. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE // Mol. Microbiol. 1999. No. 34. P. 82-90.
Вптвпцкпй А. А. Компьютерное моделирование процесса самоорганизации бактериальной системы белков MinCDE // Мат. биол. и биоинф. 2014. Т. 9. №2. C. 453-463.
Loose M. Spatial regulators for bacterial cell division self-organize into surface waves in vitro // Science. 2008. V. 320. P. 789-792.
Vitvitsky A. Cellular automata simulation of self-organization in the bacterial MinCDE system // Bull. Nov. Comp. Center, Comp. Sci. 2014. V.36. P. 103-113.
Bonny M., Fischer-Friedrich E., Loose M., et al. Membrane binding of MinE allows for a comprehensive description of min-protein pattern formation // PLOS Comput. Biol. 2013. V.9. No. 12. P. 1-12.
Бандман О. Л., Киреева А. Е. Стохастическое клеточно-автоматное моделирование колебаний и автоволн в реакционно-диффузионных системах // СибЖВМ. 2015. Т. 18. №3. С. 251-269.
Kireeva A. Parallel implementation of totalistic Cellular Automata model of stable patterns formation // LNCS. 2013. V. 7979. P. 347-360.
Simulating Complex Systems by Cellular Automata. Understanding Complex Systems / eds. A. G. Hoekstra, J. Kroc., P.M. A. Sloot. Berlin: Springer, 2010. 385 p.
Бандман О. Л. Мелкозернистый параллелизм в вычислительной математике // Программирование. 2001. №4. С. 1-18.
Bandman O. Cellular automata diffusion models for multicomputer implementation // Bull. Nov. Comp. Center, Computer Sci. 2014. V.36. P.21-31.
Витвицкий А. А. Клеточные автоматы с динамической структурой для моделирования роста биологических тканей // СибЖВМ. 2014. Т. 17. №4. C. 315-328.
Construction of inhomogeneous 3D mesh for simulation of bacterial cell growth and division by cellular automata | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 3(29).
Download full-text version
Counter downloads: 1012