The binary Golay code G = [23,12, 7] 2 and a binary algebro-geometric code C, proposed by the author, are considered for coding information in a binary symmetric channel with bandwidth W = 50 KB/s, coder/decoder clock rate 1 GHz, bit error ratio p = 0.005, and required decoding probability 0.9999. It is shown that both codes fit this channel and the code C rate is 12 % greater than the code G rate. It is also shown how you can increase the decoding speed of the standard decoding algorithm by a proper choice of a divisor D and the basis of L(D) for constructing C. The decoding complexity of C is estimated and the message transmission durations for C and G are compared.
Download file
Counter downloads: 403
- Title Comparison of the binary Golay code with the algebro-geometric code
- Headline Comparison of the binary Golay code with the algebro-geometric code
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 4(30)
- Date:
- DOI
Keywords
AG-код, код Голея, L-конструкция, эллиптическая кривая, AG-code, Golay code, L-construction, elliptic curveAuthors
References
Влэдуц С. Г., Ногин Д. Ю., Цфасман М. А. Алгеброгеометрические коды. Основные понятия. М.: МЦНМО, 2002. 504 с.
Семеновых Д. Н. О теоретико-числовых вопросах в теории кодирования: дис.. канд. физ.-мат. наук. М.: МГУ, 2005. 60 с.
Menezes A., Wu Y.-H., and Zuccherato R. An Elementary Introduction to Hyperelliptic Curves. Research report. Waterloo: Faculty of Mathematics, University of Waterloo, 1996. No. 19. 35 p.
Богачев К. Ю. Практикум на ЭВМ. Методы решения линейных систем и нахождения собственных значений. М.: МГУ, 1998. 79 с.
Мак-Вильямс Ф.Дж., Слоэн Н.Дж. А. Теория кодов, исправляющих ошибки. М.: Связь, 1979. 774 с.

Comparison of the binary Golay code with the algebro-geometric code | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2015. № 4(30).
Download full-text version
Counter downloads: 775