On the number of Sperner vertices in a tree | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 2(32).

A vertex v of a tree T is called a Sperner vertex if the in-tree T(v) obtained from T by orientation of all edges towards v has the Sperner property, i.e. there exists a largest subset A of mutually unreachable vertices in it such that all vertices in A are equidistant to v. Some explicit methods to count the number of Sperner vertices in certain special trees are presented.
Download file
Counter downloads: 444
  • Title On the number of Sperner vertices in a tree
  • Headline On the number of Sperner vertices in a tree
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 2(32)
  • Date:
  • DOI
Keywords
дерево, шпернерова вершина, цепь, звезда, пальма, шеренга, гусеница, кортеж пальм, graph, Sperner vertex, path, star, palm-tree, rank, caterpillar, train of palm-trees
Authors
References
Sperner E. Ein Satz uber Untermengen einer endlichen Menge // Math. Zeitschrift. 1928. V. 27. Nu.1. S. 544-548.
Салий В. Н. Шпернерово свойство для многоугольных графов // Прикладная дискретная математика. Приложение. 2014. №7. С. 135-137. и
Салий В. Н. Шпернеровы деревья // Прикладная дискретная математика. Приложение. 2015. №8. С. 124-127.
 On the number of Sperner vertices in a tree | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 2(32).
On the number of Sperner vertices in a tree | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 2(32).
Download full-text version
Counter downloads: 1010