A characterization of matroids in terms of surfaces | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 3(33). DOI: 10.17223/20710410/33/1

In the paper, the matroids of finite rank and finite-dimensional combinatorial geometries are studied. A definition of a matroid in terms of different rank surfaces satisfying some incidence axioms is proposed. This definition is equivalent to the definition of a matroid in terms of independent sets. In case of a simple matroid its characterization can be viewed as an equivalent definition of a combinatorial geometry.
Download file
Counter downloads: 250
  • Title A characterization of matroids in terms of surfaces
  • Headline A characterization of matroids in terms of surfaces
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 3(33)
  • Date:
  • DOI 10.17223/20710410/33/1
Keywords
матроид, поверхность, ранг, комбинаторная геометрия, matroid, surface, rank, combinatorial geometry
Authors
References
Whitney H. On the abstract properties of linear dependence // Amer. J. Math. 1935. V. 57. P. 509-533.
Brylawski T. Appendix of matroid cryptomorphisms // Theory of Matroids. Encyclopedia of Mathematics and its Applications 26 / ed. N. White. Cambridge: Cambridge University Press, 1986. P. 298-312.
Schrijver A. Combinatorial Optimization. V. B. Berlin, Heidelberg, N.Y.: Springer Verlag, 2003. 1881 p.
Welsh D. J. A. Matroid Theory. London, N.Y., San Francisco: Academic Press, 1976. 433 p.
Айгнер М. Комбинаторная теория. М.: Мир, 1982. 558с.
Рыбников К. А. Введение в комбинаторный анализ. М.: Изд-во МГУ, 1985. 308с.
Crapo H. H. and Rota G.-C. On the Foundations of Combinatorial Theory. II. Combinatorial Geometries. Cambridge, MA: MIT Press, 1970. 293 p.
VanLint J. H. and Wilson R. M. A Course in Combinatorics. N. Y.: Cambridge University Press, 2001. 602 p.
Gordon G. and McNulty J. Matroids: a Geometric Introduction. Cambridge: Cambridge University Press, 2012. 410 p.
Mason J. H. Matroids as the study of geometrical configurations // Higher Combinatorics / ed. M. Aigner. Dordrecht: Reidel Publishing Company, 1977. P. 133-176.
Bruhn H., Diestel R., Kriesell M., et al. Axioms for infinite matroids // Adv. Math. 2013. V. 239. P. 18-46.
Delucchi E. Combinatorial Geometries in Algebra and Topology. Habilitationsschrift. Universitat Bremen, 2011. 160 p.
Gelfand I. M., Goresky R. M., McPherson R. D., and Serganova V. Combinatorial geometries, convex polyhedra and Schubert cells // Adv. Math. 1987. V. 63. P. 301-316.
Oxley J. Matroid Theory. N. Y.: Oxford University Press, 1992. 532 p.
Pitsoulis L. S. Topics in Matroid Theory. N. Y.: Springer Verlag, 2014. 127 p.
Theory of Matroids. Encyclopedia of Mathematics and its Applications 26 / ed. N. White. Cambridge: Cambridge University Press, 1986. 316 p.
Combinatorial Geometries. Encyclopedia of Mathematics and its Applications 29 / ed. N. White. Cambridge: Cambridge University Press, 1987. 212 p.
Matroid Applications. Encyclopedia of Mathematics and its Applications 40 / ed. N. White. Cambridge: Cambridge University Press, 1992. 363 p.
Mac Lane S. Some interpretations of abstract linear dependence in terms of projective geometry // Amer. J. Math. 1936. V. 58. P. 236-240.
 A characterization of matroids in terms of surfaces | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 3(33). DOI: 10.17223/20710410/33/1
A characterization of matroids in terms of surfaces | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 3(33). DOI: 10.17223/20710410/33/1
Download full-text version
Counter downloads: 1056