Let B0(2, 5) = (a1,a2) be the largest 2-generator Burnside group of exponent 5. It has the order 5. There is a power commutator representation of B0(2, 5). In this case, every element of the group can be uniquely represented as aQ • aQ • ... • aQ|, where ai e Z5, ai e B0(2, 5), i = 1, 2,..., 34. Here, a1 and a2 are generators of B0(2, 5), commutators a3,...,a34 are recursively defined by a1 and a2. We define Bk = B0(2, 5)/(ak+1,..., a34) as a quotient of B0(2, 5). It is clearly that |Bk| = 5. A new algorithm for computing the growth function of Bk is created. Using this algorithm, we calculated the growth functions of Bk relative to generating sets {a1, a2} and {a1, a-, a2, a-} for k = 15, 16, 17.
Download file
Counter downloads: 185
- Title An algorithm for computation of the growth functions in finite two-generated groups of exponent 5
- Headline An algorithm for computation of the growth functions in finite two-generated groups of exponent 5
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 3(33)
- Date:
- DOI 10.17223/20710410/33/10
Keywords
функция роста, группа Бернсайда, граф Кэли, Burnside group, the growth functionAuthors
References
Even S. and Goldreich O. The Minimum Length Generator Sequence is NP-hard // J. Algorithms. 1981. No. 2. P. 311-313.
Кузнецов А. А., Кузнецова А. С. Параллельный алгоритм для исследования графов Кэли групп подстановок // Вестник СибГАУ. 2014. №1. C. 34-39.
Holt D., Eick B., and O'Brien E. Handbook of Computational Group Theory. Boca Raton: Chapman & Hall/CRC Press, 2005. 514 p.
Camelo M, Papadimitriou D., Fabrega L., and Vila P. Efficient routing in data center with underlying Cayley graph // Proc. 5th Workshop on Complex Networks CompleNet. 2014. P. 189-197.
Кузнецов А. А. Графы Кэли бернсайдовых групп периода 3 // Сибирские электронные математические известия. 2015. T. 12. C. 248-254.
Havas G., Wall G., and Wamsley J. The two generator restricted Burnside group of exponent five // Bull. Austral. Math. Soc. 1974. No. 10. P. 459-470.
Sims C. Fast multiplication and growth in groups // Proc. 1998 Intern. Symp. Symbolic Algebraic Computation. 1998. P. 165-170.
Филиппов К.А. О диаметре Кэли одной подгруппы группы Bo(2, 5) // Вестник СибГАУ. 2012. №1. С. 234-236.
Sims C. Computation with Finitely Presented Groups. Cambridge: Cambridge University Press, 1994. 628 p.
Скиена C. Алгоритмы. Руководство по разработке. СПб.: БХВ-Петербург, 2014. 720 с.
Hall P. Nilpotent Groups: Notes of Lectures Given at the Canadian Mathematical Congress Summer Seminar, University of Alberta, 12-30 August, 1957. London: Queen Mary College, 1969.
Кузнецов А. А., Кузнецова А. С. Быстрое умножение элементов в конечных двупорождённых группах периода пять // Прикладная дискретная математика. 2013. № 1. C. 110-116

An algorithm for computation of the growth functions in finite two-generated groups of exponent 5 | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 3(33). DOI: 10.17223/20710410/33/10
Download full-text version
Counter downloads: 1057