Discrete stochastic simulation of the electrons and holes recombination in the 2D and 3D inhomogeneous semiconductor | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 4(34). DOI: 10.17223/20710410/34/9

Stochastic models of electron-hole recombination in 2D and 3D inhomogeneous semiconductors based on a discrete cellular automata approach are presented in the paper. These models are derived from a Monte Carlo algorithm based on spatially inhomoge-neous nonlinear Smoluchowski equations with the random initial distribution density used to simulate the annihilation of spatially separate electrons and holes in a disordered semiconductor characterized by the heterogeneous properties of the material. Recombination kinetics in different regimes such as a pure diffusion, diffusion in vicinity of tunneling and diffusion in the presence of recombination centers are investigated by a cellular automata simulation. Statistical characteristics of the recombination process (particle concentrations and the radiative intensity) obtained by the cellular automaton models are compared with the theoretically known asymptotics derived for a pure diffusion case. The results obtained for a two-dimensional domain correspond to the theoretical asymptotics, whereas in three-dimensional case, they differ from the exact asymptotics. It is found out by simulations that a spatial electron and hole separation (segregation) occurs under certain conditions on the diffusion and tunneling rates. The electron-hole spatial segregation in 2D and 3D semiconductors is analyzed by using the probability density of the electron-hole separation. In addition, the execution time of the codes implementing the cellular automaton model of the recombination in 2D and 3D semiconductors is studied in dependence on the number of simulated electron-hole pairs and the size of the semiconductor domain. It is shown that the execution time for semiconductors of dimension d is proportional to a polynomial of order d.
Download file
Counter downloads: 297
  • Title Discrete stochastic simulation of the electrons and holes recombination in the 2D and 3D inhomogeneous semiconductor
  • Headline Discrete stochastic simulation of the electrons and holes recombination in the 2D and 3D inhomogeneous semiconductor
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 4(34)
  • Date:
  • DOI 10.17223/20710410/34/9
Keywords
рекомбинация, полупроводник, диффузия, туннелирование, стохастическое моделирование, клеточный автомат, recombination, semiconductor, diffusion, tunnelling, stochastic simulation, cellular automata
Authors
References
Gorgis A., Flissikowski T., Brandt O., et al. Time-resolved photoluminescence spectroscopy of individual GaN nanowires // Phys. Rev. 2012. No.B86. 041302(R).
Brandt O. and Ploog K. H. Solid state lighting: the benefits of disorder // Nat. Mater. 2006. No. 5. P. 769-770.
Brosseau C.N., Perrin M., and Silva C. Carrier recombination dynamics in InxGa1-xN/GaN multiple quantum wells // Phys. Rev. 2010. No.B82. 085305.
Sabelfeld K. K., Brandt O., and Kaganer V.M. Stochastic model for the fluctuation-limited reaction-diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations // J. Math. Chem. 2015. V. 53. Iss. 2. P. 651-669.
Kolodko A. A. and Sabelfeld K. K. Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles // Monte Carlo Methods and Applications. 2001. V. 7. No. 3-4. P. 223-228.
Kolodko A., Sabelfeld K., and Wagner W. A stochastic method for solving Smoluchowski's coagulation equation // Mathematics and Computers in Simulation. 1999. V. 49. No. 1-2. P. 57-79
Sabelfeld K. K., Levykin A. I., and Kireeva A. E. Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations // Monte Carlo Methods and Applications. 2015. V.21. No. 1. P. 33-48.
Toffoli T. and Margolus N. Cellular Automata Machines: A New Environment for Modeling. USA: MIT Press, 1987. 259 p.
Бандман О. Л. Клеточно-автоматные модели пространственной динамики // Системная информатика. Методы и модели современного программирования. 2006. №10. С. 59-113.
Wolfram S. A New Kind of Science. Wolfram Media, 2002. 1197 p.
Ермаков С.М., Михайлов Г. А. Статистическое моделирование. М.: Физматлит, 1982. 296 с.
Kireeva A. E. and Sabelfeld K. K. Cellular automata model of electrons and holes annihilation in an inhomogeneous semiconductor // LNCS. 2015. V. 9251. P. 191-200.
 Discrete stochastic simulation of the electrons and holes recombination in the 2D and 3D inhomogeneous semiconductor | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 4(34). DOI: 10.17223/20710410/34/9
Discrete stochastic simulation of the electrons and holes recombination in the 2D and 3D inhomogeneous semiconductor | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2016. № 4(34). DOI: 10.17223/20710410/34/9