The sequences of random characters from a finite set A with polynomial distributions controlled by a stationary finite-state Markov chain are considered. For numbers of character runs in them, the asymptotic properties of joint distributions are studied. We deduce an estimate for the total variation distance pTV between the distribution of a random vector with components being numbers of runs in a controlled sequence of an enough length T and accompanying multidimensional Poisson distribution Pois(AA). The estimate is pTV (L(A)) ^ y (7T(p*)* +1), where Y = |A|(2s* + 3)(p*)*, s* (s*) is the minimum (maximum) length of run in the set of components of the vector ^д, and p* is the maximum character probability in distributions given on A. For deriving this estimate, we use the functional variant of Chen - Stein method and an estimation for the total variation distance between the mixed and ordinal Poisson distributions. This estimation is a function of the variance of mixing parameter of mixed Poisson distribution. Using the derived estimate for the total variation distance pTV, we deduce the multidimensional Poisson and normal limit theorems for the random vector under appropriate conditions for scheme parameters.
Download file
Counter downloads: 212
- Title Estimator for the distribution of the numbers of runs in a random sequence controlled by stationary Markov chain
- Headline Estimator for the distribution of the numbers of runs in a random sequence controlled by stationary Markov chain
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 35
- Date:
- DOI 10.17223/20710410/35/2
Keywords
число серий, цепь Маркова, расстояние по вариации, метод Чена-Стейна, смешанное распределение Пуассона, предельная теорема Пуассона, центральная предельная теорема, скрытая марковская модель, number of runs, Markov chain, total variation distance, Chen-Stein method, mixed Poisson distribution, Poisson limit theorem, normal limit theorem, hidden Markov modelAuthors
References
Balakrishnan N. and Koutras M. V. Runs and Scans with Applications. N.Y.: John Whiley & Sons Inc., 2002. 452 p.
Михайлов В. Г. Об асимптотических свойствах числа серий событий // Тр. по дискр. матем. 2006. Т. 9. С. 152-163.
Aki S. and Hirano K. Discrete distributions related to succession events in two-state Markov chain // Statistical Science and Data Analysis / eds. K. Matusita, M.L. Puri, T. Hayakawa. Zeist: VSP International Science Publishers, 1993. P. 467-474.
Aki S. and Hirano K. Sooner and later waiting time problems for runs in Markov dependent bivariate trials // Ann. Inst. Stat. Math. 1999. V. 51. P. 17-29.
Han Q. and Aki S. Formulae and recursions for the joint distributions of success runs of several lengths in a two-state Markov chain // Stat. Probab. Lett. 1998. V.40. No.3. P. 203-214.
Савельев Л. Я., Балакин С. В. Совместное распределение числа единиц и числа 1-серий в двоичных марковских последовательностях // Дискретная математика. 2004. Т. 16. №3. С. 43-62.
Савельев Л. Я., Балакин С. В. Комбинаторное вычисление моментов характеристик серий в троичных марковских последовательностях // Дискретная математика. 2011. Т. 23. №2. С. 76-92.
Савельев Л. Я. Распределения числа состояний в двоичных марковских стохастических моделях // Сиб. журн. вычисл. матем. 2015. Т. 18. №2. С. 191-200.
Савельев Л. Я., Балакин С. В. Некоторые применения стохастической теории серий // Сиб. журн. индустр. матем. 2012. Т. 15. №3. С. 111-123.
Shinde R. L. and Kotwal K. S. On the joint distribution of runs in the sequence of Markov-dependent multi-state trials // Stat. Probab. Lett. 2006. V. 76. No. 10. P. 1065-1074.
Geske M. X., Godbole A. P., Schaffner A. A., et al. Compound Poisson approximations for word patterns under Markovian hypotheses //J. Appl. Probab. 1995. V. 32. P. 877-892.
Erhardsson T. Compound Poisson approximation for Markov chains using Stein's method // Ann. Probab. 1999. V.27. No. 1. P. 565-596.
Chryssaphinou O. and Vaggelatou E. Compound Poisson approximation for multiple runs in a Markov chain // Ann. Inst. Stat. Math. 2002. V. 54. No. 2. P. 411-424.
Fu J. C., Wang L., and Lou W. Y. W. On exact and large deviation approximation for the distribution of the longest run in a sequence of two-state Markov dependent trials //J. Appl. Probab. 2003. V.40. No. 2. P. 346-360.
Eryilmaz S. Some results associated with the longest run statistic in a sequence of Markov dependent trials // Appl. Math. Comput. 2006. V. 175. No. 1. P. 119-130.
Pinsky M. A. and Karlin S. The long run behavior of Markov chains // An Introduction to Stochastic Modeling. Fourth Edition / eds. M.A. Pinsky, S. Karlin. Boston: Elsevier, 2011. P. 165-222.
Fu J. C. and Johnson B. C. Approximate probabilities for runs and patterns in i.i.d. and Markov-dependent multistate trials // Adv. Appl. Probab. Appl. Probab. Trust. 2009. V. 41. No. 1. P. 292-308.
Михайлов В. Г., Шойтов А. М. О длинных повторениях цепочек в цепи Маркова // Дискретная математика. 2014. Т. 26. №3. С. 79-89.
Михайлов В. Г. Оценки точности пуассоновской аппроксимации для распределения числа серий повторений длинных цепочек в цепи Маркова // Дискретная математика. 2015. Т. 27. №4. С. 67-78.
Mytalas G. C. and Zazanis M. A. Central Limit Theorem approximations for the number of runs in Markov-dependent binary sequences //J. Stat. Plan. Inference. 2013. V. 143. No. 2. P. 321-333.
Mahmoudzadeh E., Montazeri M. A., Zekri M., and Sadri S. Extended hidden Markov model for optimized segmentation of breast thermography images // Infrared Phys. Technol. 2015. V. 72. P. 19-28.
Yang W., Tao J., and Ye Z. Continuous sign language recognition using level building based on fast hidden Markov model // Pattern Recognit. Lett. 2016. V. 78. P. 28-35.
Elliott R. J., Aggoun L., and Moore J. B. Hidden Markov Models. N. Y.: Springer, 1995. V. 29. 382 p.
Aston J. A. D. and Martin D. E. K. Distributions associated with general runs and patterns in hidden Markov models // Ann. Appl. Stat. 2007. V. 1. No. 2. P. 585-611.
Меженная Н. М. О числе совпадений знаков в дискретной случайной последовательности, управляемой цепью Маркова // Сибирские электронные математические известия. 2016. Т. 13. С. 305-317.
Розанов Ю.А. Случайные процессы. Краткий курс. М.: Наука, 1979. 184с.
Mezhennaya N. M. On the distribution of the number of runs in polynomial sequence controlled by Markov chain // OP&PM Surv. Appl. Ind. Math. 2016. V. 23. No. 2. P. 186-187.
Меженная Н. М. О предельном распределении числа серий в полиномиальной последовательности, управляемой цепью Маркова // Вестник УдГУ. 2016. Т. 26. №3. C. 324-335.
Barbour A. D., Holst L., and Janson S. Poisson Approximation. Oxford: Oxford Univ. Press, 1992. 277р.

Estimator for the distribution of the numbers of runs in a random sequence controlled by stationary Markov chain | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 35. DOI: 10.17223/20710410/35/2
Download full-text version
Counter downloads: 432