For a set of digraphs Г = {Г1,..., Гр}, p > 1, we present a criterion to be primitive. We do it in terms of characteristics of the multidigraph Г = Г1U... U Гр where each edge in Г is assigned the label i, i = 1,... ,p. Any walk of length s in Г is assigned a word w = w1... ws of length s over the alphabet {1,... ,p}, and the corresponding product of digraphs r(w) = rwi · ... · rWs is introduced. The walk is assigned the label w if it is the concatenation of t walks labeled with w. The multidigraph Г is called w-strongly connected if it is strongly connected and, for all its vertices i and j, there exists a walk in Г from i to j labeled with w for some natural number t. By the definition, the set of digraphs Г is primitive if and only if r(w) is primitive for some word w. Thus, we have the following criterion: the digraph r(w) is primitive if and only if Г is w-strongly connected and has cycles labeled with w,..., w, where gcd(t1,... ,tm) = 1. As a corollary, we prove that the problem of recognizing the primitivity of Г is algorithmically decidable. In the particular case, when the digraphs in Г have the common set of cycles C = {C1,...,Cm} of lengths l1,...,lm respectively, m ^ 1, l1 ^ ... ^ lm, the digraph r(w), w = w1... ws, is primitive if any one of the following conditions holds: a) m = 1 and l1 = 1; b) gcd(l1,..., lm) = s; c) the digraph C1 U ... U Cm is connected and has quasi-Eulerian C-cycle of length s. At last, for the set of digraphs Г = {ro,...,Гп-1} with vertex set {0,... , n - 1}, where for some l, n ^ l > 1, each Г^ i £ {0,... ,n - 1}, has a Hamiltonian cycle (0,..., n - 1) and the edge (i, (i + l) mod n), we prove the following criterion of primitivity and bounds for the exponent: the set Г = {Го,..., Гп-1} is primitive if and only if gcd(n, l - 1) = 1, and in this case n - 1 ^ expT ^ 2n - 2. The minimal subset of Г = {Г^ ..., Гп-1} with exponent 2n - 2 contains at most n/d digraphs, where d = gcd(n,l). The presented results are used for evaluating mixing properties of cryptographic functions compositions.
Download file
Counter downloads: 268
- Title Conditions of primitivity and exponent bounds for sets of digraphs
- Headline Conditions of primitivity and exponent bounds for sets of digraphs
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 35
- Date:
- DOI 10.17223/20710410/35/8
Keywords
граф Виландта, примитивное множество матриц (графов), экспонент графа, Wielandt's graph, primitive set of matrices (digraphs), exponent of digraphAuthors
References
Сачков В. Н., Тараканов В. Е. Комбинаторика неотрицательных матриц. М.: ТВП, 2000. 448 с.
Князев А. В. Оценки экстремальных значений основных метрических характеристик псевдосимметрических графов: дис..д-ра физ.-мат. наук. М., 2002. 203с.
Фомичев В. М. Методы дискретной математики в криптологии. М.: Диалог-МИФИ, 2010. 424 c.
Авезова Я. Э., Фомичев В. М. Комбинаторные свойства систем разноразмерных 0,1-матриц // Прикладная дискретная математика. 2014. №2(24). С. 5-11.
Фомичев В. М., Мельников Д. А. Криптографические методы защиты информации. Ч. 1. Математические аспекты. М.: Изд-во Юрайт, 2016. 209 c.
Кяжин С. Н., Фомичев В. М. Локальная примитивность графов и неотрицательных матриц // Прикладная дискретная математика. 2014. №3(25). С. 68-80.
Берж К. Теория графов и её применение. М.: ИЛ, 1962. 320с.
Фомичев В. М., Кяжин С. Н. Локальная примитивность матриц и графов // Дискретный анализ и исследование операций. 2017. Т. 24. №1. С. 97-119.
Фомичев В. М. Новая универсальная оценка экспонентов графов // Прикладная дискретная математика. 2016. №3(33). С. 78-84.

Conditions of primitivity and exponent bounds for sets of digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 35. DOI: 10.17223/20710410/35/8
Download full-text version
Counter downloads: 432