Conditions of primitivity and exponent bounds for sets of digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 35. DOI: 10.17223/20710410/35/8

For a set of digraphs Г = {Г1,..., Гр}, p > 1, we present a criterion to be primitive. We do it in terms of characteristics of the multidigraph Г = Г1U... U Гр where each edge in Г is assigned the label i, i = 1,... ,p. Any walk of length s in Г is assigned a word w = w1... ws of length s over the alphabet {1,... ,p}, and the corresponding product of digraphs r(w) = rwi · ... · rWs is introduced. The walk is assigned the label w if it is the concatenation of t walks labeled with w. The multidigraph Г is called w-strongly connected if it is strongly connected and, for all its vertices i and j, there exists a walk in Г from i to j labeled with w for some natural number t. By the definition, the set of digraphs Г is primitive if and only if r(w) is primitive for some word w. Thus, we have the following criterion: the digraph r(w) is primitive if and only if Г is w-strongly connected and has cycles labeled with w,..., w, where gcd(t1,... ,tm) = 1. As a corollary, we prove that the problem of recognizing the primitivity of Г is algorithmically decidable. In the particular case, when the digraphs in Г have the common set of cycles C = {C1,...,Cm} of lengths l1,...,lm respectively, m ^ 1, l1 ^ ... ^ lm, the digraph r(w), w = w1... ws, is primitive if any one of the following conditions holds: a) m = 1 and l1 = 1; b) gcd(l1,..., lm) = s; c) the digraph C1 U ... U Cm is connected and has quasi-Eulerian C-cycle of length s. At last, for the set of digraphs Г = {ro,...,Гп-1} with vertex set {0,... , n - 1}, where for some l, n ^ l > 1, each Г^ i £ {0,... ,n - 1}, has a Hamiltonian cycle (0,..., n - 1) and the edge (i, (i + l) mod n), we prove the following criterion of primitivity and bounds for the exponent: the set Г = {Го,..., Гп-1} is primitive if and only if gcd(n, l - 1) = 1, and in this case n - 1 ^ expT ^ 2n - 2. The minimal subset of Г = {Г^ ..., Гп-1} with exponent 2n - 2 contains at most n/d digraphs, where d = gcd(n,l). The presented results are used for evaluating mixing properties of cryptographic functions compositions.
Download file
Counter downloads: 268
  • Title Conditions of primitivity and exponent bounds for sets of digraphs
  • Headline Conditions of primitivity and exponent bounds for sets of digraphs
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 35
  • Date:
  • DOI 10.17223/20710410/35/8
Keywords
граф Виландта, примитивное множество матриц (графов), экспонент графа, Wielandt's graph, primitive set of matrices (digraphs), exponent of digraph
Authors
References
Сачков В. Н., Тараканов В. Е. Комбинаторика неотрицательных матриц. М.: ТВП, 2000. 448 с.
Князев А. В. Оценки экстремальных значений основных метрических характеристик псевдосимметрических графов: дис..д-ра физ.-мат. наук. М., 2002. 203с.
Фомичев В. М. Методы дискретной математики в криптологии. М.: Диалог-МИФИ, 2010. 424 c.
Авезова Я. Э., Фомичев В. М. Комбинаторные свойства систем разноразмерных 0,1-матриц // Прикладная дискретная математика. 2014. №2(24). С. 5-11.
Фомичев В. М., Мельников Д. А. Криптографические методы защиты информации. Ч. 1. Математические аспекты. М.: Изд-во Юрайт, 2016. 209 c.
Кяжин С. Н., Фомичев В. М. Локальная примитивность графов и неотрицательных матриц // Прикладная дискретная математика. 2014. №3(25). С. 68-80.
Берж К. Теория графов и её применение. М.: ИЛ, 1962. 320с.
Фомичев В. М., Кяжин С. Н. Локальная примитивность матриц и графов // Дискретный анализ и исследование операций. 2017. Т. 24. №1. С. 97-119.
Фомичев В. М. Новая универсальная оценка экспонентов графов // Прикладная дискретная математика. 2016. №3(33). С. 78-84.
 Conditions of primitivity and exponent bounds for sets of digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 35. DOI: 10.17223/20710410/35/8
Conditions of primitivity and exponent bounds for sets of digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 35. DOI: 10.17223/20710410/35/8
Download full-text version
Counter downloads: 432