Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/2

Estimates of the rate of convergence in multidimensional limit theorems for sums of dependent random vectors are considered in many papers. The types of dependence in a sequence of random vectors can be different, for example, m-dependent and locally dependent sequences of random vectors. It is important that these estimates are implicit. They do not specify how the estimate depends on the dimension of random vectors. In this connection, in one of the author's previous papers, an explicit estimate for the distance between a multidimensional normal distribution and the distribution of the sum of locally dependent random vectors was obtained. In this paper, we improve this estimate. Also, it is proved that for centered and normalized sums of independent random vectors, the order of this estimate is equal to d9/2n-1/2 ln n, where d is dimension and n is number of vectors. Results of this paper have applications for discrete mathematical objects. For example, in the paper we consider a fixed regular graph. Each vertex is independently assigned one of the colors with a certain probability. A condition for the normal approximation of the number of edges incident to vertices of the same color is obtained.
Download file
Counter downloads: 183
  • Title Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors
  • Headline Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 36
  • Date:
  • DOI 10.17223/20710410/36/2
Keywords
многомерная центральная предельная теорема, локально зависимые случайные векторы, multivariate CLT, locally dependent random vectors
Authors
References
Ootze F. On the rate of convergence in the multivariate CLT // Ann. Probab. 1991. V. 19. P. 724-739.
Sunklodas J. Convergence rate estimate in central limit theorem for m-dependent random vectors // Lithuanian Math. J. 1978. V. 18(4). P. 566-575.
Goldstein L. and Rinott Y. Multivariate normal approximations by Stein's method and size bias couplings // Appl. Probab. 1996. V. 33. P. 1-17.
Reinert G. and Rollin A. Multivariate normal approximation with Stein's method of exchangeable pairs under a general linearity condition // Ann. Probab. 2009. V. 37. P. 2150-2173.
Rinott Y. and Rotar V. I. A multivariate CLT for local dependence with n-1/2 log n rate and applications to multivariate graph related statistics // J. Multivariate Analysis. 1996. V. 56. P. 333-350.
Волгин А. В. Оценка скорости сходимости в многомерной центральной предельной теореме // Прикладная дискретная математика. Приложение. 2013. №6. С. 11-12.
Волгин А. В. Об оценке точности многомерной нормальной аппроксимации сумм локально зависимых случайных векторов // Обозрение прикл. и промышл. матем. 2015. Т. 22(4). С.11-30.
Зорич В.А. Математический анализ. Ч.1. М.: МЦНМО, 2002. 664с.
Ширяев А.Н. Вероятность-1. М.: МЦНМО, 2007. 552с.
 Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/2
Improving the rate of convergence in the multidimensional central limit theorem for sums of locally dependent random vectors | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/2
Download full-text version
Counter downloads: 726