Using Gauss sums, we solve the problem of obtaining the formulas for the exact values N(z,u) of appearances of z among the elements u(0), u(1), ..., u(T - 1) of a linear recurrence sequence (LRS) u generated by an irreducible polynomial of a degree m over a field P = GF(q) in the case, when the period of u is equal to T = (qm - 1)/d, where d| (pj + 1) for some natural number j and p = char P, that is, p is a semiprimitive number modulo d. Such a sequence u is obtained from a LRS of the maximal period qm - 1 by regular sampling with step d. The results of the article generalize the formulas for N(z,u) which are well-known in the case of prime q or z = 0. In fact, we give some formulas for N(z, u) in the following cases: 1) d = 2; 2) d > 2 and z = 0; 3) d > 2, z = 0, and d = d1 or d1 = 1, where d1 = ((qm - 1)/(q - 1), d); 4) d > 2, z = 0, d1 =2, and d/2 is odd or (ph + 1)/(d/2) is even, where l1 is the least positive integer such that (d/2) | (pp1 + 1). Thus, as a corollary, we have a complete solution of the problem in the situation when d is a prime number.
Download file
Counter downloads: 204
- Title Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences
- Headline Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 36
- Date:
- DOI 10.17223/20710410/36/3
Keywords
линейные рекуррентные последовательности, суммы Гаусса, число появлений элементов на циклах, linear recurrent sequences, Gauss sumAuthors
References
Глухов М. М., Елизаров В. П., Нечаев А. А. Алгебра: учебник. Т. 2. М.: Гелиос АРВ, 2003. 416c.
Лидл Р., Нидеррайтер Г. Конечные поля. М.: Мир, 1988.
McEliece R. J. Irreducible cyclic codes and Gauss sums // Combinatorics. 1975. P. 185-202.
Цирлер Н. Линейные возвратные последовательности // Кибернетический сборник. 1963. №6. C. 55-79.
Лаксов Д. Линейные рекуррентные последовательности над конечными полями // Математика. Сборник переводов. 1967. Т. 11. №6. С. 145-158.
Baumert L. D. and McEliece R. J. Weights of irreducible cyclic codes // Information and Control. 1972. V. 20. P. 158-175.
Nelubin A. S. Distribution of elements on cycles of linear recurrences over Galois fields // Formal Power Series and Algebraic Combinatorics. 12-th Intern. Conf. FPSAC. Moscow, 2000. P. 534-542.

Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/3
Download full-text version
Counter downloads: 726