Cryptautomata with functional keys | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/5

In this paper, we describe the cryptautomata and some cryptanalysis techniques for them. In cryptographic systems, the cryptautomata are widely used as its primitives including key-stream generators, s-boxes, cryptofilters, cryptocombiners, key hash functions as well as symmetric and public-key ciphers, digital signature schemes. Here, a cryptautomaton is defined as a class C of automata networks of a fixed structure N constructed by means of the series, parallel, and feedback connection operations over initial finite automata (finite state machines) with transition and output functions taken from some predetermined functional classes. A cryptautomaton key can include initial states, transition and output functions of some components in N. The choosing a certain key k produces a certain network N from C to be a cryptographic algorithm. In case of invertibility of N, this algorithm can be used for encryption. The operation (functioning) of any network N in the discrete time is described by the canonical system of equations of its automaton. The structure of Nk is described by the union of canonical systems of equations of its components. The cryptanalysis problems for a cryptautomaton are considered as the problems of solving the operational or structural system of equations of Nk with the corresponding unknowns that are key k variables and (or) plaintexts (input sequences). For solving such a system E, the method DSS is used. It is the iteration of the following three actions: 1) E is Divided into subsystems E, and E", where E, is easy solvable; 2) E, is Solved; 3) the solutions of E, are Substituted into E" by turns. The definition and cryptanalysis of a cryptautomaton are illustrated by giving the example of the autonomous cryptautomaton with the alternative control. It is a generalization of the LFSR-based cryptographic alternating step generator. We present a number of attacks on this cryptautomaton with the states or output functions of its components as a key.
Download file
Counter downloads: 338
  • Title Cryptautomata with functional keys
  • Headline Cryptautomata with functional keys
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 36
  • Date:
  • DOI 10.17223/20710410/36/5
Keywords
конечный автомат, автоматная сеть, криптоавтомат, криптоавтомат с альтернативным управлением, криптоанализ, метод DSS, доопределение частичных функций, finite automaton, automata network, cryptautomaton, cryptautomaton generator with alternative control, cryptanalysis, linearization attack, "devide-and-solve-and-substitute", partially defined function completion
Authors
References
Агибалов Г. П. Конечные автоматы в криптографии // Прикладная дискретная математика. Приложение. 2009. №2. С. 43-73.
Tao R. Finite Automata and Application to Cryptography. TSINGHUA University Press, 2009. 406 p.
Агибалов Г. П., Панкратова И. А. О двухкаскадных конечно-автоматных криптографических генераторах и методах их криптоанализа // Прикладная дискретная математика. 2017. №35. С. 38-47.
Агибалов Г. П., Панкратова И. А. К криптоанализу двухкаскадных конечно-автоматных криптографических генераторов // Прикладная дискретная математика. Приложение. 2016. №9. С. 41-43.
Агибалов Г. П. Логические уравнения в криптоанализе генераторов ключевого потока // Вестник Томского государственного университета. Приложение. 2003. №6. С. 31-41.
Menezes A, van Oorshot P., and Vanstone S. Handbook of Applied Cryptography. CRC Press Inc., 1997. 661 p.
Фомичёв В. М. Дискретная математика и криптология. М.: ДИАЛОГ-МИФИ, 2003. 400 с.
Агибалов Г. П. О некоторых доопределениях частичной булевой функции // Труды Сибирского физико-технического института. 1970. Вып. 49. С. 12-19.
Агибалов Г. П., Сунгурова О. Г. Криптоанализ конечно-автоматного генератора ключевого потока с функцией выходов в качестве ключа // Вестник Томского государственного университета. Приложение. 2006. № 17. С. 104-108.
Агибалов Г. П. Методы решения систем полиномиальных уравнений над конечным полем // Вестник Томского государственного университета. Приложение. 2006. № 17. С. 4-9.
 Cryptautomata with functional keys | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/5
Cryptautomata with functional keys | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/5
Download full-text version
Counter downloads: 726