Generic-case approach to algorithmic problems was suggested by Miasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. In this paper we introduce a notion of generic polynomial reducibility algorithmic problems, which preserve the property of polynomial decidability of the problem for almost all inputs and has the property of transitivity. It is proved that the classical satisfiability problem of Boolean formulas is complete with respect to this generic reducibility in the generic analogue of class NP.
Download file
Counter downloads: 232
- Title On generic NP-completeness of the Boolean satisfiability problem
- Headline On generic NP-completeness of the Boolean satisfiability problem
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 36
- Date:
- DOI 10.17223/20710410/36/8
Keywords
генерическая сложность, проблема выполнимости, NP-полнота, generic complexity, Boolean satisfiability problem, NP-completenessAuthors
References
Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. 419 с.
Levin L. Average case complete problems // SIAM J. Computing. 1987. V. 15. P. 285-286.
Gurevich Y. Average case completeness // J. Computer System Sciences. 1991. V. 42. P. 346398.
Kapovichl., Miasnikov A, Schupp P., and Shpilrain V. Generic-case complexity, decision problems in group theory and random walks // J. Algebra. 2003. V. 264. No. 2. P. 665-694.
Gilman R., Miasnikov A. G., Myasnikov A. D., and Ushakov A. Report on generic case complexity // Herald of Omsk University. 2007. Special Issue. P. 103-110.
Impagliazzo R. and Wigderson A. P = BPP unless E has subexponential circuits: Derandomizing the XOR Lemma // Proc. 29th STOC. El Paso: ACM, 1997. P. 220-229.
Cook S. A. The complexity of theorem proving procedures // Proc. 3d Annual ACM Symposium on Theory of Computing. N. Y., USA, 1971. P. 151-158.
Рыбалов А. О генерической сложности проблемы общезначимости булевых формул // Прикладная дискретная математика. 2016. №2(32). С. 119-126.
On generic NP-completeness of the Boolean satisfiability problem | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/8
Download full-text version
Counter downloads: 735