On the non-redundant representation of the minimax basis of strong associations | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/9

Associative rules are the type of dependencies between data that reflect which features or events occur together and how often this happens. Strong associative rules are of interest for those applications where a high degree of confidence of dependencies is required. For example, they are used in information security, computer network analysis and medicine. Excessively large number of identified rules significantly complicates their expert analysis and application. To reduce the severity of this problem, we propose the MClose algorithm, which extends the capabilities of the well-known algorithm Close. The Close algorithm forms a minimax basis in which each strong associative rule has a minimum premise and a maximal consequence. However, in the minimax basis, some redundant strong associative rules remain. The MClose algorithm recognizes and eliminates them in the process of constructing a minimax basis. The proposed algorithm is based on the properties of closed sets. Its correctness is proved by proving the reflexivity, additivity, projectivity, and transitivity properties of strong associative rules.
Download file
Counter downloads: 239
  • Title On the non-redundant representation of the minimax basis of strong associations
  • Headline On the non-redundant representation of the minimax basis of strong associations
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 36
  • Date:
  • DOI 10.17223/20710410/36/9
Keywords
соответствия Галуа, замкнутые множества, строгие ассоциативные правила, неизбыточность, минимаксный базис, Galois connection, closed sets, strong association rules, non-redundant, minimax basis
Authors
References
Витяев Е. Е., Демин А. В., Пономарев Д. К. Вероятностное обобщение формальных понятий // Программирование. 2012. №5. С. 18-34.
Городецкий В. И., Самойлов В. В. Ассоциативный и причинный анализ и ассоциативные байесовские сети // Тр. СПИИРАН. 2009. Вып. 9. С. 13-65.
Кузнецов С. О. Автоматическое обучение на основе анализа формальных понятий // Автоматика и телемеханика. 2001. №10. С. 3-27.
Биркгоф Г., Барти Т. Современная прикладная алгебра. СПб.: Лань, 2005. 400 с.
Гуров С. И. Булевы алгебры, упорядоченные множества, решетки: определения, свойства, примеры. М.: Книжный дом «ЛИБРОКОМ», 2013. 352 с.
Ganter B. and Wille R. Formal Concept Analyses: Mathematical Foundations. Springer Science and Business Media, 2012. 314 p.
Pasquier N., Bastide Y., TaouiR., and Lakhal L. Generating a condensed representation for association rules // J. Intelligent Inform. Systems. 2005. V. 24. No. 1. P. 29-60.
Майер Д. Теория реляционных баз данных. М.: Мир, 1987. 608 с.
Батура Т. В. Модели и методы анализа компьютерных социальных сетей // Программные продукты и системы. 2013. №3. С. 130-137.
Платонов В. В., Семенов П. О. Методы сокращения размерности в системах обнаружения сетевых атак // Проблемы информационной безопасности. Компьютерные системы. 2012. №3. С. 40-45.
Ilayaraja M. and Meyyappan T. Mining medical data to identify frequent diseases using Apriori algorithm // Pattern Recognition, Informatics and Mobile Engineering (PRIME), IEEE, 2013. P. 194-199.
Duquenne V. and Obiedkov S. A. Attribute-incremental construction of the canonical implication basis // Ann. Math. Artif. Intelligence. 2007. V.49. No. 1. P. 77-99.
Rudolph S. Some notes on pseudo-closed sets // LNCS. 2007. V.4390. P. 151-165.
Zaki M. J. and Hsiao C.-J. Efficient algorithms for mining closed itemsets and their lattice structure // IEEE Trans. Knowledge Data Eng. 2005. V. 17. No. 4. P. 462-478.
Uno T., Asai T., Uchida Y., and Arimura H. An efficient algorithm for enumerating closed patterns in transaction databases // LNCS. 2004. V. 3245. P. 16-31.
Zhang C. and Zhang S. Association Rules Mining. Springer, 2002. 240 p.
Geng L. and Hamilton H. J. Interestingness measures for data mining: a survey // ACM Computing Surveys. 2006. V. 38. No. 3. Article 9.
 On the non-redundant representation of the minimax basis of strong associations | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/9
On the non-redundant representation of the minimax basis of strong associations | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 36. DOI: 10.17223/20710410/36/9
Download full-text version
Counter downloads: 726