Let R be an associative, commutative ring and let (: Rm ^ R, where m ^ 0. Denote by degn ( the smallest integer n ^ -1 such that ( can be represented by an m-variate polynomial of degree n over R. (By convention, the degree of the zero polynomial is -1.) Also, let degRM ( denote the smallest integer n ^ -1 such that dv1 ... dVn+1 ( = = 0 for all v\,... ,vn+\ £ Rm. Here (dvф)(х) = ф(х + v) - ф(х) for any v,x £ Rm and any function ф: Rm ^ R. If no such integer n exists, then we put degn ( = то or degRM ( = то, respectively. In this paper, we study the problem of characterizing the class D of all associative, commutative rings R such that these degrees coincide for functions over R, i.e., degn ( = degRM ( for all m ^ 0 and all functions (: Rm ^ R. We solve this problem when the additive group R of the ring R belongs to some large classes of abelian groups. Namely, our main results are as follows: 1) if R is torsion or finitely generated, then R £ D if and only if R = Z/dZ for some square-free integer d ^ 1; 2) if R is not reduced, then R £ D if and only if R = (Z/dZ) ф Q for some square-free integer d ^ 1; 3) if R is a direct sum of rank 1 subgroups, then R £ D if and only if R = Z/dZ or R = (Z/dZ) ф Q for some square-free integer d ^ 1; 4) if R is reduced and cotorsion, then R £ D if and only if R = П (Z/pZ) for some set P of peP prime numbers. The proof of these results is based on the fact that any ring in D is an E-ring.
Download file
Counter downloads: 220
- Title On the two definitions of degree of a function over an associative, commutative ring
- Headline On the two definitions of degree of a function over an associative, commutative ring
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 37
- Date:
- DOI 10.17223/20710410/37/1
Keywords
ассоциативное кольцо, коммутативное кольцо, абелева группа, аддитивная группа кольца, многочлен, степень функции, E-кольцо, формула Ньютона, associative ring, commutative ring, Abelian group, additive group of a ring, polynomial, degree of a function, E-ring, Newton's formulaAuthors
References
Логачев О. А., Сальников А. А., Ященко В. В. Некоторые характеристики «нелинейности» групповых отображений // Дискретный анализ и исследование операций. Сер. 1. 2001. Т. 8. №1. С. 40-54.
Анохин М. И. О некоторых множествах групповых функций // Матем. заметки. 2003. Т. 74. №1. С. 3-11.
Черемушкин А. В. Аддитивный подход к определению степени нелинейности дискретной функции // Прикладная дискретная математика. 2010. №2(8). С. 22-33.
Черемушкин А. В. Аддитивный подход к определению степени нелинейности дискретной функции на циклической группе примарного порядка // Прикладная дискретная математика. 2013. №2(20). С. 26-38.
Fuchs L. Infinite Abelian Groups. Academic Press, 1970 (v. I), 1973 (v. II). Русс. пер.: Фукс Л. Бесконечные абелевы группы. М.: Мир, 1974 (т. 1), 1977 (т. 2).
Fuchs L. Abelian Groups. Springer, 2015.
Schultz P. The endomorphism ring of the additive group of a ring // J. Austral. Math. Soc. 1973. V. 15. No. 1. P. 60-69.
Bowshell R. A. and Schultz P. Unital rings whose additive endomorphisms commute // Math. Ann. 1977. V. 228. No.3. P. 197-214.
Riordan J. Combinatorial identities. John Wiley & Sons, 1968. Русс. пер.: Риордан Дж. Комбинаторные тождества. М.: Наука, 1982.
Jaballah A. Subrings of Q //J. Sci. Technol. 1997. V. 2. No. 2. P. 1-13.
Dimitric R. On coslender groups // Glasnik Matem. 1986. V. 21(41). No. 2. P. 327-329.

On the two definitions of degree of a function over an associative, commutative ring | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 37. DOI: 10.17223/20710410/37/1
Download full-text version
Counter downloads: 615