On application of multidimensional complex analysis in formal language and grammar theory | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 37. DOI: 10.17223/20710410/37/6

Systems of polynomial equations over a semiring (with respect to symbols with a non-commutative multiplication and a commutative addition) are investigated. These systems of equations are interpreted as the grammars of formal languages and are resolved with respect to the non-terminal symbols in the form of the formal power series (FPS) depending on the terminal symbols. The commutative image of the system of equations is determined under the assumption that the symbols are variables taking values from the field of complex numbers. The connections between solutions of the non-commutative symbolic system of equations and its commutative image are established, thus the methods for multidimensional complex analysis are involved in the theory of formal language grammars. A discrete analogue of implicit mapping theorem onto formal grammars is proved: a sufficient condition for the existence and the uniqueness of a solution of a non-commutative system of equations in the form of FPS is the inequality to zero of the Jacobian of the commutative image of this system. A new method for syntactic analysis of the monomials of a context-free language as a model of programming languages is also proposed. The method is based on the integral representation of the syntactic polynomial of a program. It is shown that the integral of a fixed multiplicity over a cycle allows finding the syntactic polynomial of a monomial (program) with the unlimited number of symbols, that gives a new approach to the problem of syntactic analysis.
Download file
Counter downloads: 238
  • Title On application of multidimensional complex analysis in formal language and grammar theory
  • Headline On application of multidimensional complex analysis in formal language and grammar theory
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 37
  • Date:
  • DOI 10.17223/20710410/37/6
Keywords
формальный степенной ряд, коммутативный образ, синтаксический анализ, интегральное представление, formal power series, commutative image, syntactic analysis, integral representation
Authors
References
Salomaa A. and Soitolla M. Automata-Theoretic Aspects of Formal Power Series. N.Y.: Springer Verlag, 1978. 167 p.
Глушков В. М., Цейтлин Г. Е., Ющенко Е. Л. Алгебра. Языки. Программирование. Киев: Наукова думка, 1973. 319 с.
Гриффитс Ф, Харрис Дж. Принципы алгебраической геометрии. Т. 1. М.: Мир, 1982. 259 с.
Егорушкин О. И., Колбасина И. В., Сафонов К. В. О совместности систем символьных полиномиальных уравнений и их приложении // Прикладная дискретная математика. Приложение. 2016. №9. С. 119-121. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000547685
Egorushkin O. I., Kolbasina I. V., and Safonov K. V. On Solvability of Systems of Symbolic Polynomial Equations // Журнал Сибирского федерального университета. Математика и физика. 2016. Т. 9. №2. С. 166-172.
Семёнов А. Л. Алгоритмические проблемы для степенных рядов и контекстно-свободных грамматик // Доклады Академии наук СССР. 1973. Т. 212. С. 50-52.
Safonov K. V. On power series of algebraic and rational functions in Cn // J. Math. Analysis and Appl. 2000. V. 243. P. 261-277.
Сафонов К. В., Егорушкин О. И. О синтаксическом анализе и проблеме В. М. Глушкова распознавания контекстно-свободных языков Хомского // Вестник Томского государственного университета. 2006. Приложение №17. С. 63-67.
Safonov K. V. An algebraicity criterion for the sum of a power series (a generalization of Kronecker's criterion) and its application // Doklady Mathematics. 2009. V. 79. No. 1. P. 13-15.
Pemantle R. and Wilson M. C. Analytic Combinatorics in Several Variables. Cambridge: Cambridge University Press, 2013. 414 p.
Herve M. Several Complex Variables. Local Theory. Oxford: Oxford University, 1963. 158 p.
Глухов М. М., Елизаров В. П., Нечаев А. А. Алгебра. СПб.; М.; Краснодар: Лань, 2015. 608 с.
Aizenberg L. A. and Yuzhakov A. P. Integral Representations and Residues in Multidimensional Complex Analysis. Translations of Mathematical Monographs. V. 58. Providence: AMS, 1983. 283 p.
 On application of multidimensional complex analysis in formal language and grammar theory | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 37. DOI: 10.17223/20710410/37/6
On application of multidimensional complex analysis in formal language and grammar theory | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2017. № 37. DOI: 10.17223/20710410/37/6
Download full-text version
Counter downloads: 615