Classical algebraic geometry studies sets of solutions of algebraic equations over the fields of real and complex numbers. In the frameworks of computational algebraic geometry, several algorithms were proposed (for example, the Buchberger algorithm) for solving systems of polynomial equations over these fields. Universal algebraic geometry studies systems of equations over arbitrary algebraic structures. The equations are atomic formulas in the language of an algebraic structure. In this article, we consider the problem of recognizing the solvability of systems of equations over finite partially ordered sets. We prove that this problem is NP-complete in the case when we seek a solution consisting of pairwise distinct elements of a finite partially ordered set.
Download file
Counter downloads: 213
- Title On complexity of the satisfiability problem of systems over finite posets
- Headline On complexity of the satisfiability problem of systems over finite posets
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 39
- Date:
- DOI 10.17223/20710410/39/8
Keywords
частично упорядоченное множество, системы уравнений, NP-полнота, partially ordered sets, systems of equations, NP-completenessAuthors
References
Матиясевич Ю. В. Диофантовость перечислимых множеств // Доклады Академии наук СССР. 1970. Т. 191. №2. С. 279-282.
Mayr E. W. and Meyer A. R. The complexity of the word problems for commutative semigroups and polynomial ideals // Adv. Math. 1982. V.46 (3). P.305-329.
Cook S. A. The complexity of theorem proving procedures // Proc. 3d Ann. ACM Symp. Theory of Computing. N.Y., USA, 1971. P.151-158.
Даниярова Э. Ю., Мясников А. Г., Ремесленников В. Н. Алгебраическая геометрия над алгебраическими системами. Новосибирск: СО РАН, 2016. 288с.
Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982. 419с.
Werth T., Worlein M., Dreweke A., et al. DAG mining for code compaction / eds. L. Cao, P. S. Yu, C. Zhang, and H. Zhang. Data Mining for Business Applications. Boston, MA: Springer, 2009. P. 209-223.
Оре О. Теория графов. М.: Наука, 1980. 336 с.

On complexity of the satisfiability problem of systems over finite posets | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 39. DOI: 10.17223/20710410/39/8
Download full-text version
Counter downloads: 592