Convergence of an iterative algorithm for computing parameters of multi-valued threshold functions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 39. DOI: 10.17223/20710410/39/10

A k-valued threshold function is defined as f (x1,..., xn) = i e {0,1,..., k - 1} ^ ^ b^L (x1,..., xn) < bi+1 where L (x1,..., xn) = a1x1 + a2x2 + ... + anxn is a linear form in variables x1,..., xn with the values in {0,1,..., k - 1} and coefficients a1,...,an in R and b0,...,bk are some thresholds for L in R, b0 < b1 < ... < bk. A. V. Burdelev and V. G. Nikonov have created and published in J. Computational Nanotechnology (2017, no. 1, pp. 7-14) an iterative algorithm for computing coefficients a1,..., an and thresholds b0,..., bk for any k-valued threshold function f (x1,..., xn) given by its values f (c1,..., cn) for all (c1... cn) in {0,..., k - 1}n. In computer experiment they showed the convergence of this algorithm on many different examples. Here, we present a theoretical proof of this algorithm convergence on each k-valued threshold function for a finite number of steps (iterations). The proof is very much similar to the geometrical proof of perceptron convergence theorem by M. Minsky and S. Papert.
Download file
Counter downloads: 179
  • Title Convergence of an iterative algorithm for computing parameters of multi-valued threshold functions
  • Headline Convergence of an iterative algorithm for computing parameters of multi-valued threshold functions
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 39
  • Date:
  • DOI 10.17223/20710410/39/10
Keywords
алгоритм характеризации, доказательство сходимости, пороговая функция, threshold functions, iterative algorithms, convergence
Authors
References
Бурделёв А. В., Никонов В. Г. О новом алгоритме характеризации k-значных пороговых функций // Computational Nanotechnology. 2017. Вып. 1. C.7-14.
Obradovic Z. and Parberry I. Learning with discrete multi-valued neurons // Proc. 7th Intern. Conf. Machine Learning. University of Texas, Austin, Texas, June 21-23 1990. P.392-399.
Минский М., Пейперт С. Персептроны. М.: Мир, 1971.
Никонов В. Г., Никонов Н. В. Особенности пороговых представлений k-значных функций // Труды по дискретной математике. 2008. Т. 11. Вып. 1. С. 60-85.
 Convergence of an iterative algorithm for computing parameters of multi-valued threshold functions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 39. DOI: 10.17223/20710410/39/10
Convergence of an iterative algorithm for computing parameters of multi-valued threshold functions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 39. DOI: 10.17223/20710410/39/10
Download full-text version
Counter downloads: 594