The properties of analog and binary memristors (resistors with memory) are described. The memristors can be used for the hardware implementation of neurons synapses. The memristor matrices are called crossbars. The binary memristors, whose resistance takes only two values (maximum and minimum), are based on the switching filament mechanism and are distributed more widely than analog memristors. They are much more stable to statistical fluctuations compared to analog memristors. The Hamming associative memory's hardware realization based on the use of a binary memristors crossbar and CMOS circuitry is proposed. The maximum binary memristor resistance corresponds to the stored reference vector component value -1, and the minimum resistance corresponds to the value +1. It is shown that the binary memristors crossbar realizes the Hamming network first layer properties according to which the output first layer neuron signal is non-negative. This signal is maximal for a neuron with the reference vector closest to the input vector. For a given reference vector dimension, the relationship between the maximum and minimum binary memristors resistances is obtained. It guarantees the Hamming network first layer correct operation. Simulation in the LTSPICE system of the proposed Hamming memory scheme confirmed its operability.
Download file
Counter downloads: 344
- Title Construction of a Hamming network based on a crossbar with binary memristors
- Headline Construction of a Hamming network based on a crossbar with binary memristors
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 40
- Date:
- DOI 10.17223/20710410/40/9
Keywords
ассоциативная память Хемминга, мемристор, кроссбар, КМОП-технология, LTSPICE, associative Hamming memory, memristor, crossbar, CMOS-technology, LTSPICEAuthors
References
Strukov D. В., Snider G.S., Stewart D.R., and Williams R.S. The missing memristor found // Nature. 2008. V.453. P. 80-83.
http://www.utmn.ru/presse/teleradiokanal-evrazion/videonovosti-tyumgu/89986/
Chua L. Memristor - the missing circuit element // IEEE Trans. Circuit Theory. 1971. V. 18. P. 507-519.
Pershin Y. and Bi Ventra M. Experimental demonstration of associative memory with memristive neural networks // Neural Networks. 2010. V. 23. No. 7. P. 881-886.
Chua L. Resistance switching memories are memristors // Appl. Phys. A: Mater. Sci. & Process. 2011. V. 102. No. 4. P. 765-783.
Ho Y., Huang С. M., and Li P. Nonvolatile memristor memory: device characteristics and design applications // Proc. Int. Conf. ICCAD. 2009. P. 485-490.
Jo S. H., Chang Т., Ebong I., et al. Nanoscale memristor device as synapse in neuromorphic systems j j Nanoletters. 2010. V. 10. No. 4. P. 1297-1301.
Kavehei O. Memristive Devices and Circuits for Computing, Memory, and Neuromorphic Applications. PhD Thesis. The University of Adelaida, Australia, 2011.
Lehtonen E. Memristive Computing. Doctoral Thesis. University of Turku, Finland, 2012.
Lu W., Kim K.-H., Chang Т., and Gaba S. Two-terminal resistive switches (memristors) for memory and logic applications // Proc. 16th Asia and South Pacific Design Automation Conf., Yokohama, Japan, 2011.
Truong S.N., Ham S.-J., and Min K.-S. Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition // Nanoscale Res. Lett. 2014. No. 9:629. http://www.nanoscalereslett.com/content/9/1/629
Yakopcic C., Taha Т. M., Subramanyam G., and Pino R. E. Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time // Proc. Int. Joint Conf. Neural Networks. Dallas, Texas, USA. August 4-9, 2013.
Осовский С. Нейронные сети для обработки информации. М.: Финансы и статистика, 2002. 344 с.
Zhu X., Yang X., Wu С., et al. Hamming network circuits based on CMOS/memristor hybrid design // IEICE Electronics Express. 2013. V. 10. No. 12. P. 1-9.
Lazzaro J., Ryckebusch S., Mahowald M. A., and Mead C. A. Winner-take-all networks of О (n) complexity j j Advances in Neural Information Processing Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989. P. 703-711.
Володин В. Я. Компьютерное моделирование электронных схем. СПб.: БХВ-Петербург, 2010. 400с.
Construction of a Hamming network based on a crossbar with binary memristors | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 40. DOI: 10.17223/20710410/40/9
Download full-text version
Counter downloads: 793