Our subject for investigation is the problem of APN permutation existence for even number of variables. In this work, we consider 2-to-1 functions that are isomorphic to (n - 1)-subfunctions of APN permutations. These 2-to-1 functions can be obtained with a special algorithm which searches for 2-to-1 APN functions that are potentially EA-equivalent to permutations. The algorithm is based on constructing special symbol sequences that are called admissible. It is known that (n - 1)-subfunction of an APN permutation can be represented as a differentially 4-uniform 2-to-1 function that takes values from the half of the Boolean cube. Therefore, the following algorithm can be used to search for APN permutations. On the first step all the possible admissible sequences are constructed and we assign obtained sequences in order to find a differentially 4-uniform 2-to-1 function. Therefore, obtained function can be isomorphic to a (n - 1)-subfunction of an APN permutation, so, this (n - 1)-subfunction can be expanded to bijective APN function. In order to construct an APN permutation, we need to find all possible coordinate Boolean functions f such that the bijective function constructed from the given (n - 1)-subfunction S and function f is APN. Unfortunately, the exhaustive search through the set of potential coordinate functions is computationally hard when n ^ 7, so, we need to estimate the number n(S) of such coordinate Boolean functions. For a given bijective vectorial function F, we introduce an associated permutation F* as follows. We split the set Fn into two disjoint subsets F1 and F2, fix integer k, indices i1,..., ik, and index j £ {i1,..., ik}. Then the value F*(x) is equal to F(x) if F(x) £ F1 and F*(x) is equal to F(x) + ej otherwise. We prove that F* is an APN permutation if and only if F is an APN permutation. This fact allows us to obtain the necessary bound. We prove that if n(S) is not equal to zero, then n(S) ^ 2n.
Download file
Counter downloads: 276
- Title On constructing APN permutations using subfunctions
- Headline On constructing APN permutations using subfunctions
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 41
- Date:
- DOI 10.17223/20710410/41/2
Keywords
векторная функция, APN-функция, перестановка, подфункция, vectorial function, APN function, permutation, subfunctionAuthors
References
Carlet C., Charpin P., and Zinoviev V. Codes, bent functions and permutations suitable for DES-like cryptosystems // Des. Codes Cryptogr. 2000. V. 15. P. 125-156.
Gold R. Maximal recursive sequences with 3-valued recursive crosscorrelation functions // IEEE Trans. Inform. Theory. 1968. V. 14. P. 154-156.
Nyberg K. Differentially uniform mappings for cryptography // EUROCRYPT'93. LNCS. 1994. V. 765. P. 55-64.
Kasami T. The weight enumerators for several classes of subcodes of the second order binary Reed - Muller codes // Inform. Control. 1971. V. 18. P. 369-394.
Janwa H. and Wilson R. Hyperplane sections of Fermat varieties in P3 in char. 2 and some applications to cyclic codes // Proc. AAECC-10. LNCS. 1993. V.673. P. 180-194.
Canteaut A., Charpin P., and Dobbertin H. Binary m-sequences with three-valued crosscorrelation: a proof of Welch conjecture // IEEE Trans. Inform. Theory. 2000. V. 46. P. 4-8.
Dobbertin H. Almost perfect nonlinear functions over GF(2n): the Welch case // IEEE Trans. Inform. Theory. 1999. V.45. P. 1271-1275.
Dobbertin H. Almost perfect nonlinear functions over GF(2n): the Niho case // Inform. Comput. 1999. V. 151. P. 57-72.
Hollmann H., and Xiang Q. A proof of the Welch and Niho conjectures on crosscorrelations of binary m-sequences // Finite Fields Appl. 2001. V. 7. P. 253-286.
Beth T. and Ding C. On almost perfect nonlinear permutations // EUROCRYPT'93. LNCS. 1993. V. 765. P. 65-76.
Dobbertin H. Almost perfect nonlinear power functions over GF(2n): a new case for n divisible by 5 / eds. D. Jungnickel and H. Niederreiter. Finite Fields and Applications. Berlin; Heidelberg: Springer, 2001. P. 113-121.
Глухов M. M. О приближении дискретных функций линейными функциями // Математические вопросы криптографии. 2016. Т. 7. №4. С. 29-50.
Blondeau C. and Nyberg K. Perfect nonlinear functions and cryptography // Finite Fields Appl. 2015. V. 32. P. 120-147.
Carlet C. Open questions on nonlinearity and on APN Functions // LNCS. 2015. V. 9061. P. 83-107.
Pott A. Almost perfect and planar functions // Des. Codes Cryptography. 2016. V. 78(1). P. 141-195.
Тужилин М.Э. Почти совершенные нелинейные функции // Прикладная дискретная математика. 2009. №3. С. 14-20.
Budaghyan L. Construction and Analysis of Cryptographic Functions. Springer International Publishing, 2014. 168 p.
Carlet C. Vectorial Boolean functions for cryptography // Ch. 9 of the monograph "Boolean Methods and Models in Mathematics, Computer Science, and Engineering". Cambridge Univ. Press, 2010. P. 398-472.
Hou X.-D. Affinity of permutations of Fn // Discr. Appl. Math. Special Issue: Coding and Cryptography Archive. 2006. V. 154. P. 313-325.
Browning K. A., Dillon J. F., McQuistan M. T., and Wolfe A. J. An APN permutation in dimension six // 9-th Intern. Conf. Finite Fields and Their Applications Fq'09, Contemporary Math., AMS, 2010. V.518. P. 33-42.
Canteaut A., Duval S., and Perrin L. A generalisation of Dillon's APN permutation with the best known differential and linear properties for all fields of size 24k+2 // IEEE Trans. Inform. Theory. 2016. V.63. P. 7575-7591.
Perrin L., Udovenko A, and Biryukov A. Cryptanalysis of a theorem: Decomposing the only known solution to the big APN problem // CRYPTO 2016. Part II. LNCS. 2016. V.9815. P. 93-122.
Idrisova V. On an algorithm generating 2-to-1 APN functions and its applications to "the big APN problem" // Cryptography and Communications. 2018. P. 1-19.
Городилова А.А. Характеризация почти совершенно нелинейных функций через подфункции // Дискретная математика. 2015. №27(3). C.3-16.

On constructing APN permutations using subfunctions | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 41. DOI: 10.17223/20710410/41/2
Download full-text version
Counter downloads: 572