This paper shows how the nonlinear decomposition method, that had been invented by the first author, works against two cryptographic schemes based on group automorphisms. In some cases we can find the secret data and break the scheme without solving the algorithmic problem on which scheme is based. More exactly, let G be a group and A be a finitely generated subgroup of the automorphism group Aut(G). Suppose, that the membership search problem for G is efficiently solvable for any subgroup of the form (gA) generated by the all images of g under automorphisms of A, and every subgroup (gA) is finitely generated. Then there exists an efficient algorithm to construct a finite generating set of (gA) and the nonlinear decomposition method can be applied. In particular, if the elements g,f = ga,h = fe G G are public, а, в G Aut(G), ав = ва, and а, в are private, then one can efficiently compute ha without computing а or в. The method efficiently works for a Noetherian group with efficiently solvable membership search problem. In particular, finitely generated nilpotent (more generally, polycyclic) groups, that are frequently used in the modern algebraic cryptography, share this property.
Download file
Counter downloads: 170
- Title A nonlinear decomposition method in analysis of some encryption schemes using group automorphisms
- Headline A nonlinear decomposition method in analysis of some encryption schemes using group automorphisms
- Publesher
Tomsk State University
- Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 41
- Date:
- DOI 10.17223/20710410/41/4
Keywords
криптография, криптоанализ, 'распределение ключа, нелинейное разложение, проблема поиска вхождения, cryptography, cryptanalysis, key exchange, nonlinear decomposition, membership search problemAuthors
References
Roman'kov V. A. A nonlinear decomposition attack // Groups Complexity Cryptology. 2017. V. 8. P. 197-207.
Mahalanobis A. The Diffie - Hellman key exchange protocol and non-abelian nilpotent groups // Israel J. Math. 2008. V. 165. P. 161-187.
Mahalanobis A. A simple generalization of El-Gamal cryptosystem to non-abelian groups // Communications in Algebra. 2008. V. 36. P. 3878-3889.
Mahalanobis A. A simple generalization of El-Gamal cryptosystem to non-abelian groups II // Communications in Algebra. 2012. V. 40. P. 171-186.
Романьков В. А. Введение в криптографию. Курс лекций. М.: Форум, 2012. 240 с.
Романьков В. А. Алгебраическая криптография. Омск: Изд-во ОмГУ, 2013. 135 с.
Романьков В. А. Криптографический анализ некоторых известных схем шифрования, использующих автоморфизмы // Прикладная дискретная математика. 2013. №3(21). С. 35-51.
Myasnikov A. G. and Roman'kov V. A. A linear decomposition attack // Groups Complexity Cryptology. 2015. V.7. P. 81-94.
Eick B. and Kahrobaei D. Polycyclic groups: A new platform for cryptology? arXiv math.: 0411.077v1 [math.GR].
Gryak K. J. and Kahrobaei D. The status of polycyclic group-based cryptography: A survey and open problems // Groups Complexity Cryptology. 2017. V. 8. P. 171-186.
Cavallo B. and Kahrobaei D. A family of polycyclic groups over which the conjugacy problem is NP-complete. arXiv math.: 1403.4153v2 [math. GR], 19 Mar 2014. P. 1-14.
Macdonald J., Miasnikov A., Nikolaev A., and Vassileva S. Logspace and compressed-word computations in nilpotentgroups. arXiv math.:1503.03888 [math.GR]. 2015.
Macdonald J., Miasnikov A., and Ovchinnikov D. Low-complexity computations for nilpotent subgroup theorem. arXiv math.: 1706.01092v2 [math. GR] 4 Jul 2017. 23 p.
Miasnikov A. and Weift A. TC0 circuits for algorithmic problems in nilpotent groups // 42nd Intern. Symp. MFCS. 2017. Article No. 23.

A nonlinear decomposition method in analysis of some encryption schemes using group automorphisms | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 41. DOI: 10.17223/20710410/41/4
Download full-text version
Counter downloads: 572