Structural properties of minimal primitive digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 41. DOI: 10.17223/20710410/41/7

Let Гр(n, m) be the set of all minimal primitive n-vertex digraphs with m arcs. The purpose of the research is to describe the new classes of digraphs Г £ Гр(n, n + 3) and their graph degree structures D(r). This problem is important for the analysis of mixing properties of round transformations, e.g. symmetric iterative block ciphers. A matrix M is said to be primitive if there is a power Me = (m^j such that (e) mjj > 0 for all i and j; the least power e with this property is called an exponent of M. The conceptions of the primitiveness and exponent of the matrix M expand to the digraph Г with the adjacency matrix M. The minimal primitive digraph is a digraph of which adjacency matrix loses its primitiveness property after replacing any positive element by zero. The main results of our research are the following: 1) for the minimal primitive digraph Г £ Гр(n,n + 3), graph degree structures D(r) are described via solutions of the equation n1 , 2+n2 д + 2n1 , 3 + 2n2 , 2 + 2n3 д + 3n1 , 4 + 3n2 , 3 + + 3n3 , 2 + 3n4 д + ... + (n - 2)nn-1 д = 6 and represented in the table of D(r) values; 2) it is proved that D(r), for digraphs from the set Гр(n, n + k), are determined and can be calculated by D(r) for Г £ Гр (n - 1 , n + k - 2); 3) it is proved that the number of classes of digraphs Гр(n, n + k) could be estimated via solutions of the equation n1 , 2 + n2 ,1 + 2щ , 3 + 2n3 д + 3n1 , 4 + 3n4 д + 4щ , 5 + 4n5 ,1 + ... + kn1 , k+1 + knfc+1 д = 2k and graph degree structures for Г £ Гр(n - 1,n + k - 2); 4) N3 ^ 34 and N2 ^ 9, where is the number of classes in Гр(n, n + i).
Download file
Counter downloads: 177
  • Title Structural properties of minimal primitive digraphs
  • Headline Structural properties of minimal primitive digraphs
  • Publesher Tomask State UniversityTomsk State University
  • Issue Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics 41
  • Date:
  • DOI 10.17223/20710410/41/7
Keywords
примитивная матрица, примитивный орграф, сильносвязный орграф, primitive matrix, primitive digraph, strongly connected digraph
Authors
References
Фомичев В. М. Методы дискретной математики в криптологии. М.: Диалог-МИФИ, 2010. 424 с.
Когос К. Г., Фомичев В. М. Положительные свойства неотрицательных матриц // Прикладная дискретная математика. 2012. №4 (18). С. 116-121.
Фомичев В. М. Свойства минимальных примитивных орграфов // Прикладная дискретная математика. 2015. №2 (28). С. 86-96.
Харари Ф. Теория графов. М.: Едиториал УРСС, 2003. 296с.
Бухштаб А. А. Теория чисел. СПб.: Лань, 2008. 384 с.
 Structural properties of minimal primitive digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 41. DOI: 10.17223/20710410/41/7
Structural properties of minimal primitive digraphs | Prikladnaya Diskretnaya Matematika - Applied Discrete Mathematics. 2018. № 41. DOI: 10.17223/20710410/41/7
Download full-text version
Counter downloads: 572